You can do this using the development (master) version of TensorLy. Specifically, you can use the new partial_tucker
function (it is not yet updated in the documentation...).
Note that the following solution preserves the structure of the tensor, i.e. a tensor of shape (n_samples, n_steps, n_features)
is decomposed into a (smaller) tensor of shape (n_samples, n_components_1, n_components_2)
.
Code
Short answer: this is a very basic class that does what you want (and it would work on tensors of arbitrary order).
import tensorly as tl
from tensorly.decomposition._tucker import partial_tucker
class TensorPCA:
def __init__(self, ranks, modes):
self.ranks = ranks
self.modes = modes
def fit(self, tensor):
self.core, self.factors = partial_tucker(tensor, modes=self.modes, ranks=self.ranks)
return self
def transform(self, tensor):
return tl.tenalg.multi_mode_dot(tensor, self.factors, modes=self.modes, transpose=True)
Usage
Given an input tensor, you can use the previous class by first instantiating it with the desired ranks (size of the core tensor) and modes on which to perform the decomposition (in your 3D case, 1 and 2 since indexing starts at zero):
tpca = TensorPCA(ranks=[4, 5], modes=[1, 2])
tpca.fit(tensor)
Given a new tensor originally called new_tensor
, you can project it using the transform
method:
tpca.transform(new_tensor)
Explanation
Let's go through the code with an example: first let's import the necessary bits:
import numpy as np
import tensorly as tl
from tensorly.decomposition._tucker import partial_tucker
We then generate a random tensor:
tensor = np.random.random((10, 11, 12))
The next step is to decompose it along its second and third dimensions, or modes (as the first dimension corresponds to the samples):
core, factors = partial_tucker(tensor, modes=[1, 2], ranks=[4, 5])
The core corresponds to the transformed input tensor while factors
is a list of two projection matrices, one for the second mode and one for the third mode. Given a new tensor, you can project it to the same subspace (the transform
method) by projecting each of its last two dimensions:
tl.tenalg.multi_mode_dot(tensor, factors, modes=[1, 2], transpose=True)
The transposition here is equivalent to an inverse since the factors are orthogonal.
Finally, a note on the terminology: in general, even though it is sometimes done, it is probably best to not use interchangeably order and rank of a tensor. The order of a tensor is simply its number of dimensions while the rank of a tensor is usually a much more complicated notion which you could think of as a generalization of the notion of matrix rank.