I have some problem with the eigenvectors that julia gives me when I calculate the eigenvectors of some matrix of the type:
[-3.454373366796186+1.0*im -0.25350955594231006 0.08482455312233446 0.5677952929872186 0.8512642461184345 -3.3973836853171955
-0.25350955594231006 -4.188304472566067 -0.7536261600953561 -0.2208291476393107 -0.9576102121737481 0.7295909738153196
0.08482455312233446 -0.7536261600953561 -4.145281297093087 0.40094370842599164 -0.3177721876030173 -1.1267847565490017
0.5677952929872186 -0.2208291476393107 0.40094370842599164 -2.561932209885087 0.40874651002530255 -0.5972057181377701
0.8512642461184345 -0.9576102121737481 -0.3177721876030173 0.40874651002530255 -4.22394564475772 -0.6957268391716376
-3.3973836853171955 0.7295909738153196 -1.1267847565490017 -0.5972057181377701 -0.6957268391716376 -3.4158987954939084+1.0*im]
(the matrix should be hermitian, except for the element (1,1) and (6,6).
It's eigenvectors are: Real part
[[-0.60946085 0.66877065 -0.10826958 -0.253947 0.30520429 0.02194697]
[ 0.20102357 -0.07276538 0.60248336 -0.07765244 0.71609468 -0.24683536]
[-0.18741272 0.21271718 0.48641162 0.11191183 -0.52801356 -0.62029698]
[-0.26210071 -0.0094668 -0.07383844 0.91999668 0.22550855 -0.0102918 ]
[-0.23182113 -0.02787858 0.61634939 0.03726956 -0.20443225 0.72225431]
[ 0.64708605 0.70447722 0.04021026 0.22014373 -0.06068686 0.16822489]]
Imaginary part
[[ 0.00680416 0.01172969 0.0036139 -0.00816376 0.02468384 -0.05604585]
[ 0.04974942 0.00719276 -0.01608118 0.09895638 0. -0.01326765]
[-0.04007749 -0.06932898 0.01283773 -0.06201991 -0.01329243 0.00324368]
[-0.07372251 0.00715689 0.0038056 0. -0.09608138 0.01970827]
[-0.04798741 -0.00062382 0. -0.07323346 0.03896021 0. ]
[ 0. 0. 0.03589898 0.04052119 -0.08599638 -0.00702559]]
Obviously there's a dependence on the imaginary part, otherwise the zeros in every imaginary part of the eigenvectors would not appear. I know this in part because I did the calculation in mathematica and it doesn't give me zeroes.
How do I erase such behaviour?