On Wikipedia the algorithm below is supposed to test if an odd integer, n, is a composite by the probabilistic Rabin-Miller primality test.
Input: n > 3, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: _composite_ if n is composite, otherwise _probably prime_
write n − 1 as 2^r·d with d odd by factoring powers of 2 from n − 1
WitnessLoop: repeat k times:
pick a random integer a in the range [2, n − 2]
x ← a^d mod n
if x = 1 or x = n − 1 then do next WitnessLoop
repeat r − 1 times:
x ← x^2 mod n
if x = 1 then return _composite_
if x = n − 1 then do next WitnessLoop
return _composite_
return _probably prime_
My implementation of the algorithm in BigIntANSForth on GitHub below might be erroneous. The prefix 'b' stands for 'big'; there is a parameterstack for big numbers and an extra big number stack 'bx'. Also 'ys' is an extra stack for one cell integers.
barmod ( w -- v ) is a faster variant of
bmod ( w u -- v ) where u is stored in a big variable 'den' used in the word 'barmod'
The bar prefix stands for 'Barrett reduction'.
5 value accuracy
: bmiller~ \ u -- | k -- f false=composite, u odd >3, k is accuracy.
bdup >bx rs true >ys accuracy 0 \ d | r k 0
do bx xsi bover bx b**mod \ d x | r
bdup 1 digit= b1+ bx b= or 0= \ d | r f
if dup 1- 0 \ d | r r-1 0
do bx bdup b* barmod \ d x | r
bdup 1 digit= b1+ bx b= 0= or \ d | r f
if false ys! leave
then
loop ys@ 0= if leave then
then
loop drop bdrop xdrop ys> ;
\ b**mod ( b e m -- x ) calculates x=b^e(mod m)
\ The word rs (u -- d | -- r ) above calculates d (big) and r (cell) as described in the algorithm.
\ 'bx xsi' gives the random (big) integer a in the algorithm
\ '1 digit=' compare top of big stack with the single cell number '1'
\ 'xdrop' drop the bx stack and 'bx' correspond to 'r@' etc
83568136581357135713573105731571385713857130571301111111111111111111111112429 is a composite due to the implementation for any accuracy, but a prime due to Wolfram Alpha.
I'm not sure that I have interpreted the algorithm correctly. Any suggestion?