Recently, I am reading the book Purely-functional-data-structures when I came to “Exercise 3.2 Define insert directly rather than via a call to merge” for Leftist_tree。I implement a my version insert.
let rec insert x t =
try
match t with
| E -> T (1, x, E, E)
| T (_, y, left, right ) ->
match (Elem.compare x y) with
| n when n < 0 -> makeT x left (insert y right)
| 0 -> raise Same_elem
| _ -> makeT y left (insert x right)
with
Same_elem -> t
And for verifying if it works, I test it and the merge function offered by the book.
let rec merge m n = match (m, n) with
| (h, E) -> h
| (E, h) -> h
| (T (_, x, a1, b1) as h1, (T (_, y, a2, b2) as h2)) ->
if (Elem.compare x y) < 0
then makeT x a1 (merge b1 h2)
else makeT y a2 (merge b2 h1)
Then I found an interesting thing.
I used a list ["a";"b";"d";"g";"z";"e";"c"]
as input to create this tree. And the two results are different.
For merge method I got a tree like this:
and insert method I implemented give me a tree like this :
I think there's some details between the two methods even though I follow the implementation of 'merge' to design the 'insert' version. But then I tried a list inverse ["c";"e";"z";"g";"d";"b";"a"] which gave me two leftist-tree-by-insert tree. That really confused me so much that I don't know if my insert method is wrong or right. So now I have two questions:
- if my insert method is wrong?
- are leftist-tree-by-merge and leftist-tree-by-insert the same structure? I mean this result give me an illusion like they are equal in one sense.
the whole code
module type Comparable = sig
type t
val compare : t -> t -> int
end
module LeftistHeap(Elem:Comparable) = struct
exception Empty
exception Same_elem
type heap = E | T of int * Elem.t * heap * heap
let rank = function
| E -> 0
| T (r ,_ ,_ ,_ ) -> r
let makeT x a b =
if rank a >= rank b
then T(rank b + 1, x, a, b)
else T(rank a + 1, x, b, a)
let rec merge m n = match (m, n) with
| (h, E) -> h
| (E, h) -> h
| (T (_, x, a1, b1) as h1, (T (_, y, a2, b2) as h2)) ->
if (Elem.compare x y) < 0
then makeT x a1 (merge b1 h2)
else makeT y a2 (merge b2 h1)
let insert_merge x h = merge (T (1, x, E, E)) h
let rec insert x t =
try
match t with
| E -> T (1, x, E, E)
| T (_, y, left, right ) ->
match (Elem.compare x y) with
| n when n < 0 -> makeT x left (insert y right)
| 0 -> raise Same_elem
| _ -> makeT y left (insert x right)
with
Same_elem -> t
let rec creat_l_heap f = function
| [] -> E
| h::t -> (f h (creat_l_heap f t))
let create_merge l = creat_l_heap insert_merge l
let create_insert l = creat_l_heap insert l
end;;
module IntLeftTree = LeftistHeap(String);;
open IntLeftTree;;
let l = ["a";"b";"d";"g";"z";"e";"c"];;
let lh = create_merge `enter code here`l;;
let li = create_insert l;;
let h = ["c";"e";"z";"g";"d";"b";"a"];;
let hh = create_merge h;;
let hi = create_insert h;;
16. Oct. 2015 update
by observing the two implementation more precisely, it is easy to find that the difference consisted in merge a base tree T (1, x, E, E)
or insert an element x
I used graph which can express more clearly.
So i found that my insert version will always use more complexity to finish his work and doesn't utilize the leftist tree's advantage or it always works in the worse situation, even though this tree structure is exactly “leftist”.
and if I changed a little part , the two code will obtain the same result.
let rec insert x t =
try
match t with
| E -> T (1, x, E, E)
| T (_, y, left, right ) ->
match (Elem.compare x y) with
| n when n < 0 -> makeT x E t
| 0 -> raise Same_elem
| _ -> makeT y left (insert x right)
with
Same_elem -> t
So for my first question: I think the answer is not exact. it can truly construct a leftist tree but always work in the bad situation.
and the second question is a little meaningless (I'm not sure). But it is still interesting for this condition. for instance, even though the merge version works more efficiently but for construct a tree from a list without the need for insert order like I mentioned (["a";"b";"d";"g";"z";"e";"c"], ["c";"e";"z";"g";"d";"b";"a"] , if the order isn't important, for me I think they are the same set.) The merge function can't choose the better solution. (I think the the tree's structure of ["a";"b";"d";"g";"z";"e";"c"] is better than ["c";"e";"z";"g";"d";"b";"a"]'s )
so now my question is :
- is the tree structure that each sub-right spine is Empty is a good structure?
- if yes, can we always construct it in any input order?