0

I am trying to find the general formula of an inverse matrix of size 4 x 4. What I wrote is simply this:

A = [a b c d ; e f g h ; i l m n; o p q r];
inv(A)

However, the MATLAB console returns the following: undefined function or variable 'a'. How should I write the matrix to get the generic formula without putting in numeric values and doing this symbolically?

rayryeng
  • 102,964
  • 22
  • 184
  • 193

1 Answers1

1

You are getting that error because those variables aren't defined in MATLAB... at least, not currently. You'll need to use the Symbolic Mathematics Toolbox for that. One way is to create each variable: a up to p using sym, create a 4 x 4 matrix of these variables, then find the inverse.

sym a b c d e f g h i j k l m n o p;
A = [a b c d; e f g h; i j k l; m n o p];
invA = inv(A);

However, that leads to bad coding. Defining all of those symbolic variables gets rather unwieldy. Instead, I would use sym to create a 4 x 4 matrix of variables that follow a numeric pattern, then go ahead and find the inverse of that:

>> A = sym('A%d%d', [4 4])

A =

[ A11, A12, A13, A14]
[ A21, A22, A23, A24]
[ A31, A32, A33, A34]
[ A41, A42, A43, A44]

>> invA = inv(A)

invA =

[  (A22*A33*A44 - A22*A34*A43 - A23*A32*A44 + A23*A34*A42 + A24*A32*A43 - A24*A33*A42)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41), -(A12*A33*A44 - A12*A34*A43 - A13*A32*A44 + A13*A34*A42 + A14*A32*A43 - A14*A33*A42)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41),  (A12*A23*A44 - A12*A24*A43 - A13*A22*A44 + A13*A24*A42 + A14*A22*A43 - A14*A23*A42)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41), -(A12*A23*A34 - A12*A24*A33 - A13*A22*A34 + A13*A24*A32 + A14*A22*A33 - A14*A23*A32)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41)]
[ -(A21*A33*A44 - A21*A34*A43 - A23*A31*A44 + A23*A34*A41 + A24*A31*A43 - A24*A33*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41),  (A11*A33*A44 - A11*A34*A43 - A13*A31*A44 + A13*A34*A41 + A14*A31*A43 - A14*A33*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41), -(A11*A23*A44 - A11*A24*A43 - A13*A21*A44 + A13*A24*A41 + A14*A21*A43 - A14*A23*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41),  (A11*A23*A34 - A11*A24*A33 - A13*A21*A34 + A13*A24*A31 + A14*A21*A33 - A14*A23*A31)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41)]
[  (A21*A32*A44 - A21*A34*A42 - A22*A31*A44 + A22*A34*A41 + A24*A31*A42 - A24*A32*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41), -(A11*A32*A44 - A11*A34*A42 - A12*A31*A44 + A12*A34*A41 + A14*A31*A42 - A14*A32*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41),  (A11*A22*A44 - A11*A24*A42 - A12*A21*A44 + A12*A24*A41 + A14*A21*A42 - A14*A22*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41), -(A11*A22*A34 - A11*A24*A32 - A12*A21*A34 + A12*A24*A31 + A14*A21*A32 - A14*A22*A31)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41)]
[ -(A21*A32*A43 - A21*A33*A42 - A22*A31*A43 + A22*A33*A41 + A23*A31*A42 - A23*A32*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41),  (A11*A32*A43 - A11*A33*A42 - A12*A31*A43 + A12*A33*A41 + A13*A31*A42 - A13*A32*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41), -(A11*A22*A43 - A11*A23*A42 - A12*A21*A43 + A12*A23*A41 + A13*A21*A42 - A13*A22*A41)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41),  (A11*A22*A33 - A11*A23*A32 - A12*A21*A33 + A12*A23*A31 + A13*A21*A32 - A13*A22*A31)/(A11*A22*A33*A44 - A11*A22*A34*A43 - A11*A23*A32*A44 + A11*A23*A34*A42 + A11*A24*A32*A43 - A11*A24*A33*A42 - A12*A21*A33*A44 + A12*A21*A34*A43 + A12*A23*A31*A44 - A12*A23*A34*A41 - A12*A24*A31*A43 + A12*A24*A33*A41 + A13*A21*A32*A44 - A13*A21*A34*A42 - A13*A22*A31*A44 + A13*A22*A34*A41 + A13*A24*A31*A42 - A13*A24*A32*A41 - A14*A21*A32*A43 + A14*A21*A33*A42 + A14*A22*A31*A43 - A14*A22*A33*A41 - A14*A23*A31*A42 + A14*A23*A32*A41)]

The notation here is that the first subscript denotes the row, and the second subscript denotes the column. Specifically Aij is the entry for row i and column j. I'll let you figure out the rest.

rayryeng
  • 102,964
  • 22
  • 184
  • 193