I want to apply KPCA on my training data before I pass it to my SVM which seems to work fine with kernlab. Afterwards I want to embed my testing input into the new space in order to make prediction with my SVM. The documentary recommends to use the predict function, which gives me an error:
dataTrain=as.xts(data)
inputTrain=dataTrain[1:settings$windowTrain,1:ncol(dataTrain)-1]
outputTrain=dataTrain[1:settings$windowTrain,ncol(dataTrain)]
kpcaa=kpca(x=inputTrain,data=NULL,kernel="rbfdot",kpar=list(sigma=0.01))
inputTrain=kpcaa@pcv
predict(object = kpcaa,newdata=inputTest)
predict(object = kpcaa,newdata=inputTest)
Error in .local(object, ...) :
unused argument (newdata = c(0.00065527734617099, -0.00281135973754587, 0.00121922641129046, -0.00356807890285626, 0.00140997344409755, 0.000281756282681123, 0.000657122764787132, -0.000469329337005497, -0.000187793427781635, 0.00046941746156115, -0.000751173744242273, 0.000281756282681123, 0.000187793427781635, -0.000469549710462758, 0.000751173744242273, 0.00140693171451645, -0.000937734502324261, -0.000469197212192185, 0.00112570368360299, -0.0014073277173825, 0.0014073277173825, -0.00112570368360299,
0.000656814473530609, -0.00253580788619168, 0.00187899341266107, -0.00310223515540553, 0.00282061112162602, 0.00121979841537989, -0.00150150178359798, 0.000469461536250826, -0.00140904630893512, -0.000188022939352273, -0.000470212074305643, -0.000282233408900545, 0.00094046842255846, -0.000188022939352273, -0.000470212074305643, -0.000470433277716786, 0.00234995643227709, 0.000938438507310124, 0.000937558666089799, 0.0034613440236777, 0.00493736156014979, 0.00046453292050951
Does anybody can help me with this one? Thank you!