So I've been trying to implement Perlin noise recently, and have run into some unusual problems. Whenever the edges of the grid in which the random vectors are stored are crossed, the derivative appears to be discontinuous.
Here's a link to a picture of the output (on the right), along with a 1 dimensional slice (on the left).
class perlin{
private double[][][] grid;
public perlin(int x,int y, int seed){
Random r = new Random(seed);
grid = new double[x+1][y+1][2];
for(int i=0;i<grid.length;i++){
for(int j=0;j<grid[0].length;j++){
grid[i][j][0] = 2*r.nextDouble()-1;
grid[i][j][1] = 2*r.nextDouble()-1;
}
}
}
public static double lerp(double a, double b, double t){
double c = t * t * t * (t * (t * 6 - 15) + 10);
return (b * c) + (a * (1 - c));
}
public double get(double x, double y){
double x2;
double y2;
double x3;
double y3;
x2 = x * (grid.length-1);
y2 = y * (grid[0].length-1);
x3 = down(x2);
y3 = down(y2);
x2 = x2 - x3;
y2 = y2 - y3;
int i = (int) (x3);
int j = (int) (y3);
return lerp(lerp(dot(x2, y2, grid[i][j][0], grid[i][j][1] ), dot(1 - x2, y2, grid[i + 1][j][0], grid[i + 1][j][1]),x2), lerp(dot(x2, 1 - y2, grid[i][j + 1][0], grid[i][j +1][1] ), dot(1 - x2,1 - y2, grid[i + 1][j + 1][0], grid[i + 1][j + 1][1] ), x2),y2 );
// return 0;
}
public static double dot(double x1, double y1, double x2, double y2){
return x1 * x2 + y1 * y2;
}
private static double down(double a){
if (a == 0){
return 0;
}
if(a == Math.floor(a)){
return a - 1;
}else{
return Math.floor(a);
}
}
}
From what I understand about the math behind this, the derivative of the noise should be continuous at all points, but that does not appear to be the case.