Although you have already accepted the answer from @abdallah-sobehy, meaning that it works, I would suggest a more simple approach, in case it helps you or anybody around.
What you are trying to do is sometimes called preferential attachment (well, at least when you add nodes) and for that there is a random model developed quite some time ago, see Barabasi-Albert model, which leads to a power law distribution of gamma
equals -3.
Basically you have to add edges with probability equal to the degree of the node divided by the sum of the degrees of all the nodes. You can scipy.stats for defining the probability distribution with a code like this,
import scipy.stats as stats
x = Gx.nodes()
sum_degrees = sum(list(Gx.degree(Gx).values()))
p = [Gx.degree(x)/sum_degrees for x in Gx]
custm = stats.rv_discrete(name='custm', values=(x, p))
Then you just pick 2 nodes following that distribution, and that's the 2 nodes you add an edge to,
custm.rvs(size=2)
As for deleting the nodes, I haven't tried that myself. But I guess you could use something like this,
sum_inv_degrees = sum([1/ x for x in list(Gx.degree(Gx).values())])
p = [1 / (Gx.degree(x) * sum_inv_degrees) for x in Gx]
although honestly I am not completely sure; it is not anymore the random model that I link to above...
Hope it helps anyway.
UPDATE after comments
Indeed by using this method for adding nodes to an existing graph, you could get 2 undesired outcomes:
- duplicated links
- self links
You could remove those, although it will make the results deviate from the expected distribution.
Anyhow, you should take into account that you are deviating already from the preferential attachment model, since the algorithm studied by Barabasi-Albert works adding new nodes and links to the existing graph,
The network begins with an initial connected network of m_0 nodes.
New nodes are added to the network one at a time. Each new node is connected to m > m_0 existing nodes with a probability that is proportional to the number
...
(see here)
If you want to get an exact distribution (instead of growing an existing network and keeping its properties), you're probably better off with the answer from @joel
Hope it helps.