I have a function that creates a grid of similar 2D histograms. So that I can select whether to put this new plot on a pre-existing figure, I do the following:
def make_hist2d(x, y, current_fig=False, layout=(1,1,1),*args):
if current_fig:
fig = _plt.gcf()
ax = fig.add_subplot(*layout) # layout=(nrows, ncols, nplot)
else:
fig, ax = _plt.subplots()
H, x, y = np.histogram2d(...)
# manipulate the histogram, e.g. column normalize.
XX, YY = _np.meshgrid(xedges, yedges)
Image = ax.pcolormesh(XX, YY, Hplot.T, norm=norm, **pcmesh_kwargs)
ax.autoscale(tight=True)
grid_kargs = {'orientation': 'vertical'}
cax, kw = _mpl.colorbar.make_axes_gridspec(ax, **grid_kargs)
cbar = fig.colorbar(Image, cax=cax)
cbar.set_label(cbar_title)
return fig, ax, cbar
def hist2d_grid(data_dict, key_pairs, layout, *args): # ``*args`` are things like xlog, ylog, xlabel, etc.
# that are common to all subplots in the figure.
fig, ax = _plt.subplots()
nplots = range(len(key_pairs) + 1) # key_pairs = ((k1a, k1b), (k2a, k2b), ..., (kna, knb))
ax_list = []
for pair, i in zip(key_pairs, nplots):
fig, ax, cbar = make_hist2d(data[k1a], data[k1b]
ax_list.append(ax)
return fig, ax_list
Then I call something like:
hgrid = hist2d_grid(...)
However, if I want to add a new figure to the grid
, I don't know of a good way to get the subplot layout. For example, is there something like:
layout = fig.get_layout()
That would give me something like (nrows, ncols, n_subplots)
?
I could do this with something like:
n_plot = len(ax_list) / 2 # Each subplot generates a plot and a color bar.
n_rows = np.floor(np.sqrt(n_ax))
n_cols = np.ceil(np.sqrt(n_ax))
But I have to deal with special cases like a (2,4)
subplot array for which I would get n_rows = 2
and n_cols = 3
, which means that I would be passing (2,3,8)
to ax.add_subplot()
, which clearly doesn't work because 8 > 3*2.