I'm using MathNet Symbolics to handle the symbolic algebra portion of a program I'm working on. The general use is create a pair of symbolic formulas, and then divide those two formulas. This works quite well most of the time. However, sometimes, it does not want to do more complex simplification. For example:
(512*r*t*w + 2048*r*t^2*w)
-----------------------------------------------------------------------
(512*r*t*w + 512*r^2*t*w + 3072*r*t^2*w + 3072*r^2*t^2*w + 1024*r*t^3*w)
With some work, I've been able to have it eliminate w
from the equation, as it is in all terms top and bottom:
(512*r*t + 2048*r*t^2)
--------------------------------------------------------------
(512*r*t + 512*r^2*t + 3072*r*t^2 + 3072*r^2*t^2 + 1024*r*t^3)
However, I cannot figure out how to make it find common terms:
(512*r*t)*(1 + 4*t)
--------------------------------------
(512*r*t)(1 + r + 6*t + 6*r*t + 2*t^2)
And eliminate these terms:
(1 + 4*t)
-----------------------------
(1 + r + 6*t + 6*r*t + 2*t^2)
I've been using Wolfram Alpha as my gold standard for checking my work. The code from LinqPad I've been working on most of the afternoon, that gets my the elimination of w
:
var h1 = MathNet.Symbolics.Infix.ParseOrUndefined("(1/8)*r*t*w + (1/2)*r*t^2*w");
var h2 = MathNet.Symbolics.Infix.ParseOrUndefined("(1/8)*r*t*w + (1/8)*r^2*t*w + (3/4)*r*t^2*w + (3/4)*r^2*t^2*w + (1/4)*r*t^3*w");
Infix.Print(Rational.Expand(h1/h2)).Dump(); //Prints (512*r*t*w + 2048*r*t^2*w)/(512*r*t*w + 512*r^2*t*w + 3072*r*t^2*w + 3072*r^2*t^2*w + 1024*r*t^3*w)
var tot = Rational.Expand(h1 / h2);
var simplified = true;
do
{
simplified=false;
foreach (var v in Rational.Variables(tot))
{
var result = Polynomial.Divide(v, h1, h2);
if (!result.Item1.Equals(MathNet.Symbolics.Expression.Zero))
{
simplified = true;
tot = result.Item1;
break;
}
}
}while(simplified);
tot = Rational.Expand(tot);
Infix.Print(tot).Dump(); //Prints (512*r*t + 2048*r*t^2)/(512*r*t + 512*r^2*t + 3072*r*t^2 + 3072*r^2*t^2 + 1024*r*t^3)
Can someone give me pointers to how to proceed with MathNet? I've tried various combinations of functions from Rational
and Polynomial
, and have not been able to move past this point.