Getting output classification with Lasagne/Theano
I am migrating my code from pure Theano to Lasagne. I had this certain code from a tutorial to get the result of a prediction with a certain data and I would generate a csv file to send to kaggle. But with lasagne, it doesn't work. I have tried several things but they all give errors.
I would love if anyone could help me figure what's wrong!
I pasted the whole code here : http://pastebin.com/e7ry3280
test_data = np.loadtxt("../inputData/test.csv", dtype=np.uint8, delimiter=',', skiprows=1)
# The inputs are vectors now, we reshape them to monochrome 2D images,
# following the shape convention: (examples, channels, rows, columns)
data = data.reshape(-1, 1, 28, 28)
test_data = test_data.reshape(-1, 1, 28, 28)
index = T.lscalar() # index to a [mini]batch
preds = []
for it in range(len(test_data)):
test_data = test_data[it]
N = len(test_data)
# print "N : ", N
test_data = theano.shared(np.asarray(test_data, dtype=theano.config.floatX))
test_labels = T.cast(theano.shared(np.asarray(np.zeros(batch_size), dtype=theano.config.floatX)),'uint8')
###target_var
#y = T.ivector('y') # the labels are presented as 1D vector of [int] labels
#index = T.lscalar() # index to a [mini]batch
ppm = theano.function([index],lasagne.layers.get_output(network, deterministic=True),
givens={
input_var: test_data[index * batch_size: (index + 1) * batch_size],
target_var: test_labels
}, on_unused_input='warn')
p = [ppm(ii) for ii in range(N // batch_size)]
p = np.array(p).reshape((N, 10))
print (p)
p = np.argmax(p, axis=1)
p = p.astype(int)
preds.append(p)
subm = np.empty((len(preds), 2))
subm[:, 0] = np.arange(1, len(preds) + 1)
subm[:, 1] = preds
np.savetxt('submission.csv', subm, fmt='%d', delimiter=',',header='ImageId,Label', comments='')
return preds
The code fails on the line that starts with ppm = theano.function...
:
TypeError: Cannot convert Type TensorType(float32, 3D) (of Variable Subtensor{int64:int64:}.0) into Type TensorType(float32, 4D). You can try to manually convert Subtensor{int64:int64:}.0 into a TensorType(float32, 4D).
I'm just trying to input the test data to the CNN and get the results to a CSV file. How can I do it? I know I must use minibatches because the whole test data wont fit on the GPU.