I am trying to parallelize my NN across two GPUs following https://github.com/uoguelph-mlrg/theano_multi_gpu. I have all the dependencies, but the cuda runtime initialization fails with the following message.
ERROR (theano.sandbox.cuda): ERROR: Not using GPU. Initialisation of device 0 failed:
cublasCreate() returned this error 'the CUDA Runtime initialization failed'
Error when trying to find the memory information on the GPU: invalid device ordinal
Error allocating 24 bytes of device memory (invalid device ordinal). Driver report 0 bytes free and 0 bytes total
ERROR (theano.sandbox.cuda): ERROR: Not using GPU. Initialisation of device gpu failed:
CudaNdarray_ZEROS: allocation failed.
Process Process-1:
Traceback (most recent call last):
File "/opt/share/Python-2.7.9/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/opt/share/Python-2.7.9/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "/u/bsankara/nt/Git-nt/nt/train_attention.py", line 171, in launch_train
clip_c=1.)
File "/u/bsankara/nt/Git-nt/nt/nt.py", line 1616, in train
import theano.sandbox.cuda
File "/opt/share/Python-2.7.9/lib/python2.7/site-packages/theano/__init__.py", line 98, in <module>
theano.sandbox.cuda.tests.test_driver.test_nvidia_driver1()
File "/opt/share/Python-2.7.9/lib/python2.7/site-packages/theano/sandbox/cuda/tests/test_driver.py", line 30, in test_nvidia_driver1
A = cuda.shared_constructor(a)
File "/opt/share/Python-2.7.9/lib/python2.7/site-packages/theano/sandbox/cuda/var.py", line 181, in float32_shared_constructor
enable_cuda=False)
File "/opt/share/Python-2.7.9/lib/python2.7/site-packages/theano/sandbox/cuda/__init__.py", line 389, in use
cuda_ndarray.cuda_ndarray.CudaNdarray.zeros((2, 3))
RuntimeError: ('CudaNdarray_ZEROS: allocation failed.', 'You asked to force this device and it failed. No fallback to the cpu or other gpu device.')
The relevant part of the code snippet is here:
from multiprocessing import Queue
import zmq
import pycuda.driver as drv
import pycuda.gpuarray as gpuarray
def train(private_args, process_env, <some other args>)
if process_env is not None:
os.environ = process_env
####
# pycuda and zmq environment
drv.init()
dev = drv.Device(private_args['ind_gpu'])
ctx = dev.make_context()
sock = zmq.Context().socket(zmq.PAIR)
if private_args['flag_client']:
sock.connect('tcp://localhost:5000')
else:
sock.bind('tcp://*:5000')
####
# import theano stuffs
import theano.sandbox.cuda
theano.sandbox.cuda.use(private_args['gpu'])
import theano
import theano.tensor as tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import theano.misc.pycuda_init
import theano.misc.pycuda_utils
...
The error is triggered when it imports theano.sandbox.cuda. And this is where, I launch the training function as two processes.
def launch_train(curr_args, process_env, curr_queue, oth_queue):
trainerr, validerr, testerr = train(private_args=curr_args,
process_env=process_env,
...)
process1_env = os.environ.copy()
process1_env['THEANO_FLAGS'] = "cuda.root=/opt/share/cuda-7.0,device=gpu0,floatX=float32,on_unused_input=ignore,optimizer=fast_run,exception_verbosity=high,compiledir=/u/bsankara/.theano/NT_multi_GPU1"
process2_env = os.environ.copy()
process2_env['THEANO_FLAGS'] = "cuda.root=/opt/share/cuda-7.0,device=gpu1,floatX=float32,on_unused_input=ignore,optimizer=fast_run,exception_verbosity=high,compiledir=/u/bsankara/.theano/NT_multi_GPU2"
p = Process(target=launch_train,
args=(p_args, process1_env, queue_p, queue_q))
q = Process(target=launch_train,
args=(q_args, process2_env, queue_q, queue_p))
p.start()
q.start()
p.join()
q.join()
The import statement however seem to work if I try to initialize the gpu interactively in Python. I executed the first 20 lines of the train() and it worked fine there and also correctly assigned me to gpu0 as I requested.