2

I have been attempting to graphically produce a scatterplot (similar to figure 1) showing the distance of data points to its multivariate centroid. The data contains two categorical grouping factors (V4 or G8) under the column family(response variable) and 12 predictor variables. The data is called LDA.scores and can be found at the bottom of the page. After splitting the two categorical factors into two separate data frames (coding below figure 1), I used the package adegenet in an attempt to produce two scatterplots similar to figure (1) for each categorical factor to show the actual number of clusters in the data set. I understand this package is used for the analysis of genetic markers, however, I am under the impression that these scatterplots can be produced for any type of multivariate data. I tried to manipulate the data but to no avail. If anyone has a solution in terms of how to produce two figures for each categorical factor showing the 12 clusters (12 parameters measured) to its multivariate centroid, then thank so much. I have followed the tutorial and I do not understand these error or warning messages. It makes no difference if I change column [,1] to a numeric value as specified in the manual All coding and the data is located below figure (1).

Figure 1

enter image description here

Code used to produce a scatterplot after DAPC

#An attempt to create a scatterplot for the categorical factor V4 

#Split the data frame into two seperate data frames

Just.V4<-LDA.scores[LDA.scores$Family=="V4",]
Just.G8 <-LDA.scores[LDA.scores$Family=="G8",]

library(adegenet)
x<-LDA.scores[2:13]

Finding the number of clusters

grp<-find.clusters(x, max.n.clust=12, na.action="omit")

At this point the output is a BIC graph requesting how many principal components (PC's) to retain based on the shape of the positive hockey stick curve, showing the eigenvalues

I chose to retain 2 PC's as this is the where the curve is straight before the elbow (Figure 2)

Figure 2

enter image description here

The next step is to chose the number of actual number of clusters in the data set (see figure 3) based on when the negative hockey stick curve reaches its elbow, which appears to be 3 clusters.

figure 3

enter image description here

The next step is the perform the discriminant analysis of principal components

dapc1<-dapc(x, grp$grp)
scatter(dapc1)

I have tried many different combinations and here are some of the error messages

Error in dapc.data.frame(x, grp1$grp1) : Inconsistent length for grp
Warning in find.clusters.data.frame(as.data.frame(x), ...) :
NAs introduced by coercion
Error in if (n.pca >= N) warning("number of retained PCs of PCA is          greater than N") : 
missing value where TRUE/FALSE needed

Solution

set.seed(1234)
windows(width=10, height=7)
x<-LDA.scores[,2:13]
grp1<-find.clusters(x, max.n.clust=12)
dapc1<-dapc(x, grp1$grp)

After the code started working, the next step was to chose the variance explained by the PCA. I chose 2 PC showing most of the variation in the data before the elbow curve.

Figure 4

enter image description here

Lastly, the last question is to chose the number of linear discriminants to retain. I chose 1 because most of the variance in the data can be explained by the first discriminant

Figure 5

enter image description here

myCol <- c("red","purple","darkgreen")
scatter(dapc1, 
posi.da="bottomleft", 
bg="white", 
pch=17:19, 
col=myCol,
inset.solid=0.5,
lwd=9,
lty=3,
cex.lab=2,
txt.leg=paste("Cluster", 1:3),
legend=TRUE)

myInset <- function(){
            temp <- dapc1$pca.eig
            temp <- 100* cumsum(temp)/sum(temp)
            plot(temp, col=rep(c("black","lightgrey"),
                 c(dapc1$n.pca,1000)), ylim=c(0,100),
            xlab="PCA axis", ylab="Cumulated variance (%)",
            cex=1, pch=20, type="h", lwd=2)
            }

            add.scatter(myInset(), posi="bottomright",
            inset=c(-0.03,-0.01), ratio=.28,
            bg=transp("white"))

Figure 6

enter image description here

Density Plot

scatter(dapc1,1,1, col=myCol, bg="white",
        scree.da=FALSE, legend=TRUE, solid=.4)

        scatter(dapc1,1,1, col=myCol, bg="white",
        scree.da=FALSE, legend=TRUE, solid=.4)

Figure 7

enter image description here

Data called LDA.scores

mydat <- structure(list(Family = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("G8", "v4"), class =    "factor"), 
Swimming = c(-0.4805568, 0.12600625, 0.06823834, 0.67480139, 
0.64591744, 0.21265812, -0.01841352, 0.12600625, -0.2206012, 
0.27042603, 0.03935439, -0.45167284, -0.04729748, -0.10506539, 
0.0971223, -0.07618143, 0.29930998, 0.01047043, -0.24948516, 
-0.04729748, -0.01841352, -0.19171725, -0.4805568, 0.01047043, 
-0.42278889, -0.45167284, -0.30725307, 0.24154207, 1.45466817, 
-0.01841352, 0.38596185, 0.15489021, -0.04729748, 0.27042603, 
-0.07618143, -0.10506539, -0.01841352, 0.01047043, 0.06823834, 
-0.16283329, -0.01841352, -0.39390493, -0.04729748, 0.01047043, 
0.01047043, 0.06823834, -0.04729748, -0.2206012, -0.16283329, 
-0.07618143, -0.2206012, -0.19171725, -0.16283329, -0.2206012, 
-0.13394934, -0.27836911, -0.04729748, 0.01047043, 0.12600625, 
0.06823834, 0.06823834, 0.32819394, 0.32819394, -0.27836911, 
0.18377416, 0.55926557, -0.19171725, -0.19171725, 0.01047043, 
-0.19171725, -0.01841352, -0.07618143, -0.13394934, -0.39390493, 
-0.04729748, -0.27836911, 0.70368535, 0.29930998, -0.13394934, 
0.21265812), Not.Swimming = c(-0.0862927, -0.074481895, -0.056765686, 
-0.050860283, -0.050860283, -0.068576492, -0.068576492, 0.05543697, 
0.114491, -0.021333268, -0.04495488, 0.008193747, -0.056765686, 
0.008193747, 0.037720761, 0.01409915, 0.108585597, -0.074481895, 
0.002288344, 0.049531567, 0.043626164, 0.049531567, 0.020004552, 
0.008193747, 0.025909955, 0.031815358, 0.049531567, -0.039049477, 
-0.003617059, 0.002288344, 0.084963985, -0.080387298, 0.067247776, 
0.031815358, 0.037720761, 0.025909955, 0.126301805, 0.031815358, 
0.037720761, -0.050860283, -0.039049477, -0.003617059, 0.008193747, 
-0.039049477, -0.003617059, 0.008193747, 0.01409915, -0.015427865, 
0.020004552, 0.031815358, 0.020004552, -0.033144074, -0.039049477, 
-0.009522462, -0.003617059, -0.04495488, -0.050860283, -0.04495488, 
-0.068576492, -0.033144074, -0.027238671, -0.068576492, 0.01409915, 
0.002288344, 0.025909955, -0.009522462, -0.009522462, 0.025909955, 
0.15582882, 0.002288344, -0.04495488, -0.015427865, 0.008193747, 
0.037720761, 0.008193747, -0.015427865, -0.056765686, 0.079058582, 
-0.056765686, 0.025909955), Running = c(-0.157157188, 0.057316151, 
0.064711783, 0.153459372, 0.072107416, 0.057316151, -0.053618335, 
0.012942357, -0.03882707, 0.049920519, 0.012942357, -0.075805232, 
0.035129254, -0.046222702, 0.109085578, -0.03882707, 0.057316151, 
0.020337989, 0.035129254, 0.057316151, 0.005546724, -0.016640173, 
-0.142365923, 0.220020063, -0.149761556, -0.134970291, 0.042524886, 
0.072107416, 0.064711783, 0.020337989, 0.049920519, 0.020337989, 
0.138668107, 0.049920519, 0.020337989, -0.083200864, -0.024035805, 
-0.016640173, -0.03882707, -0.03882707, 0.005546724, -0.090596497, 
-0.00924454, -0.016640173, -0.075805232, -0.090596497, 0.012942357, 
-0.075805232, -0.061013967, -0.03882707, -0.112783394, -0.068409599, 
-0.090596497, -0.053618335, -0.075805232, -0.090596497, 0.064711783, 
0.012942357, 0.042524886, -0.061013967, -0.061013967, 0.064711783, 
0.175646269, -0.068409599, 0.027733621, 0.042524886, -0.03882707, 
-0.00924454, 0.027733621, -0.031431438, -0.046222702, -0.031431438, 
-0.068409599, -0.120179026, 0.035129254, -0.061013967, 0.39751524, 
0.138668107, 0.020337989, 0.035129254), Not.Running = c(-0.438809944, 
-0.539013927, -0.539013927, -0.539013927, -0.472211271, -0.071395338, 
-0.071395338, 0.296019267, 0.563229889, -0.03799401, 0.195815284, 
-0.171599321, -0.305204632, 0.062209973, -0.104796666, 0.095611301, 
    0.028808645, -0.071395338, 0.329420595, 0.296019267, -0.171599321, 
    -0.071395338, 0.596631217, 0.062209973, 0.028808645, -0.138197994, 
    0.095611301, -0.104796666, 0.296019267, 0.028808645, -0.03799401, 
    -0.33860596, 0.129012629, 0.195815284, -0.03799401, 0.396223251, 
    0.362821923, -0.138197994, 0.26261794, -0.405408616, -0.205000649, 
    0.129012629, 0.195815284, -0.205000649, -0.004592683, -0.205000649, 
    -0.071395338, -0.171599321, -0.104796666, -0.138197994, -0.104796666, 
    -0.071395338, -0.104796666, -0.03799401, -0.004592683, -0.238401977, 
    0.028808645, -0.305204632, -0.305204632, -0.271803305, -0.03799401, 
    -0.372007288, 0.095611301, 0.195815284, 0.162413956, 0.229216612, 
    0.229216612, 0.396223251, 0.630032545, 0.463025906, 0.496427234, 
    0.062209973, -0.071395338, 0.229216612, -0.071395338, -0.071395338, 
    -0.205000649, 0.229216612, -0.305204632, 0.396223251), Fighting = c(-0.67708172, 
    -0.58224128, -0.11436177, -0.34830152, -0.84568695, -0.32933343, 
    0.35984044, -0.3251183, 1.51478626, 0.11114773, 0.27975296, 
    -0.89626852, 0.12379312, 0.66965255, 1.56536783, 0.56427428, 
    -0.71291033, -0.75927677, -0.75295407, -1.00164679, -1.03958296, 
    0.82139726, -1.07541157, -1.0311527, -0.98900139, -1.06908888, 
    -1.20186549, 0.58324237, -0.9700333, 0.22917139, 0.41042201, 
    -1.11545531, -0.19023412, 0.25446217, -0.05324237, 0.09007207, 
    1.21129685, 0.62539368, 1.32932051, 0.40199175, 0.44625062, 
    0.60221046, 0.33665722, -0.63493041, -0.282967, -0.32722587, 
    -0.11646933, -0.10171637, 0.13643851, -0.57802615, 0.05002833, 
    -0.1607282, -0.29139726, 0.13222338, -0.41152848, 0.68229794, 
    -0.24292325, -0.11646933, -0.21341734, -0.24292325, -0.24292325, 
    0.09007207, -0.34197883, -0.30825778, -0.08696342, -0.8119659, 
    0.49683219, -0.13754498, -0.4831857, 0.39988418, 0.90148474, 
    0.28396809, 1.05322945, 1.24923303, 0.47154141, 1.27873894, 
    0.05002833, 1.54218461, 0.74763247, 0.11747042), Not.Fighting = c(-0.097624192, 
    -0.160103675, -0.092996082, -0.234153433, -0.136963126, -0.15778962, 
    -0.15778962, -0.023574435, 0.00188017, -0.224897213, -0.109194467, 
    -0.069855533, -0.123078796, -0.111508522, -0.143905291, -0.099938247, 
    -0.118450687, 1.519900201, 0.177748344, 0.108326696, 0.652129604, 
    0.638245274, -0.072169588, 0.087500202, -0.18093017, -0.146219346, 
    -0.049029039, -0.125392851, -0.134649071, -0.060599313, -0.086053918, 
    -0.197128554, -0.083739863, -0.092996082, 0.844196163, 0.055103433, 
    1.971140911, -0.111508522, -0.224897213, -0.187872334, -0.160103675, 
    -0.194814499, -0.053657149, -0.206384774, 0.108326696, -0.164731785, 
    0.187004564, 0.025020719, 0.057417488, 0.434608441, 0.057417488, 
    0.073615872, -0.035144709, -0.051343094, -0.134649071, -0.185558279, 
    0.013450444, -0.134649071, -0.215640993, -0.185558279, -0.005061995, 
    -0.238781543, -0.099938247, -0.16704584, -0.208698829, 0.048161268, 
    0.048161268, -0.037458764, 0.16154996, 0.031962884, -0.102252302, 
    -0.123078796, -0.139277181, -0.208698829, -0.118450687, -0.072169588, 
    -0.044400929, -0.030516599, -0.132335016, -0.037458764), 
    Resting = c(0.01081204879, -0.03398160805, 0.057108797, -0.04063432116, 
    -0.13084281035, -0.02997847693, 0.12732080268, -0.1028170581, 
    0.08155320398, -0.17932134171, -0.14338902206, -0.02058415581, 
    -0.11528274705, -0.11764091337, 0.04389156236, 0.01399844913, 
    -0.05755560242, 0.04711630687, 0.0158428036, 0.093485909, 
    0.09677967302, 0.02053612974, -0.03608286844, 0.07805238146, 
    -9.686695e-05, -0.02285413055, -0.00424187149, 0.01446241356, 
    0.03187450017, 0.11323315542, -0.01171898422, -0.06499053655, 
    -0.07758659568, -0.07399758157, -0.11503350996, 0.02167111711, 
    0.01904454162, 0.05768779393, 0.05555202379, -0.01031175326, 
    -0.00458313459, 0.17430774591, 0.00481502094, -0.00928412956, 
    0.09047589183, 0.08917985896, -0.05671203072, -0.05333390954, 
    0.08541446168, 0.10140397965, -0.02509342995, -0.0369877908, 
    0.04609635201, 0.06524159499, 0.0845977309, -0.03239032508, 
    -0.03208740616, 0.06264952925, 0.05241547086, -0.03437271856, 
    -0.03437271856, -0.06747523863, -0.01270059491, 0.10014629095, 
    -0.02872845706, -0.00950652573, 0.04867308008, 0.02486518629, 
    -0.05951115497, -0.02353665674, -0.01967923345, -0.10148651548, 
    -0.00480936518, -0.00098261723, -0.13970798195, -0.00286148145, 
    -0.05492902692, 0.10732815358, 0.11660744219, -0.02016620439
    ), Not.Resting = c(-0.77046287, 0.773856776, -2.593072768, 
    -2.837675606, -1.680828329, -0.947623773, -0.947623773, -2.607366431, 
    -0.637055341, -1.818396455, 2.170944974, -0.658126752, -0.808243774, 
    2.377766908, 2.111220276, -0.322326312, 2.218858946, 3.920878638, 
    -0.304945754, 1.038591535, 1.752268128, 0.907465624, 1.137774798, 
    -3.663486997, 2.350924346, 0.067293462, -1.898454393, -2.497647463, 
    -4.471716512, -1.465081244, -0.232806371, -3.043893581, -2.323908986, 
    1.437404886, 1.079056696, 1.110865131, 1.404724068, -1.706664294, 
    0.736746935, -0.005516985, 1.727170333, 1.685228831, 1.836016918, 
    0.46617392, 1.697173771, 1.057314221, 0.933704227, 0.482480775, 
    0.680713089, 0.090780703, 0.680713089, -0.982921741, -2.281900378, 
    0.97208909, 0.027767791, -0.1628815, -0.530221948, -0.385741863, 
    -0.972251823, 0.002267358, -1.134447998, 0.626424009, -0.722750217, 
    -0.382722075, -0.356550578, -1.851614124, -1.851614124, 1.731465143, 
    0.254319006, 2.043778341, -0.28991392, 1.386940871, 0.054207713, 
    0.594212936, 1.551821303, 3.100704184, 0.327263666, -1.055195336, 
    -1.134447998, 1.730726972), Hunting = c(-0.67708172, -0.58224128, 
    -0.11436177, -0.34830152, -0.84568695, -0.32933343, 0.35984044, 
    -0.3251183, 1.51478626, 0.11114773, 0.27975296, -0.89626852, 
    0.12379312, 0.66965255, 1.56536783, 0.56427428, -0.71291033, 
    -0.75927677, -0.75295407, -1.00164679, -1.03958296, 0.82139726, 
    -1.07541157, -1.0311527, -0.98900139, -1.06908888, -1.20186549, 
    0.58324237, -0.9700333, 0.22917139, 0.41042201, -1.11545531, 
    -0.19023412, 0.25446217, -0.05324237, 0.09007207, 1.21129685, 
    0.62539368, 1.32932051, 0.40199175, 0.44625062, 0.60221046, 
    0.33665722, -0.63493041, -0.282967, -0.32722587, -0.11646933, 
    -0.10171637, 0.13643851, -0.57802615, 0.05002833, -0.1607282, 
    -0.29139726, 0.13222338, -0.41152848, 0.68229794, -0.24292325, 
    -0.11646933, -0.21341734, -0.24292325, -0.24292325, 0.09007207, 
    -0.34197883, -0.30825778, -0.08696342, -0.8119659, 0.49683219, 
    -0.13754498, -0.4831857, 0.39988418, 0.90148474, 0.28396809, 
    1.05322945, 1.24923303, 0.47154141, 1.27873894, 0.05002833, 
    1.54218461, 0.74763247, 0.11747042), Not.Hunting = c(-0.097624192, 
    -0.160103675, -0.092996082, -0.234153433, -0.136963126, -0.15778962, 
    -0.15778962, -0.023574435, 0.00188017, -0.224897213, -0.109194467, 
    -0.069855533, -0.123078796, -0.111508522, -0.143905291, -0.099938247, 
    -0.118450687, 1.519900201, 0.177748344, 0.108326696, 0.652129604, 
    0.638245274, -0.072169588, 0.087500202, -0.18093017, -0.146219346, 
    -0.049029039, -0.125392851, -0.134649071, -0.060599313, -0.086053918, 
    -0.197128554, -0.083739863, -0.092996082, 0.844196163, 0.055103433, 
    1.971140911, -0.111508522, -0.224897213, -0.187872334, -0.160103675, 
    -0.194814499, -0.053657149, -0.206384774, 0.108326696, -0.164731785, 
    0.187004564, 0.025020719, 0.057417488, 0.434608441, 0.057417488, 
    0.073615872, -0.035144709, -0.051343094, -0.134649071, -0.185558279, 
    0.013450444, -0.134649071, -0.215640993, -0.185558279, -0.005061995, 
    -0.238781543, -0.099938247, -0.16704584, -0.208698829, 0.048161268, 
    0.048161268, -0.037458764, 0.16154996, 0.031962884, -0.102252302, 
    -0.123078796, -0.139277181, -0.208698829, -0.118450687, -0.072169588, 
    -0.044400929, -0.030516599, -0.132335016, -0.037458764), 
    Grooming = c(0.01081204879, -0.03398160805, 0.057108797, 
    -0.04063432116, -0.13084281035, -0.02997847693, 0.12732080268, 
    -0.1028170581, 0.08155320398, -0.17932134171, -0.14338902206, 
    -0.02058415581, -0.11528274705, -0.11764091337, 0.04389156236, 
    0.01399844913, -0.05755560242, 0.04711630687, 0.0158428036, 
    0.093485909, 0.09677967302, 0.02053612974, -0.03608286844, 
    0.07805238146, -9.686695e-05, -0.02285413055, -0.00424187149, 
    0.01446241356, 0.03187450017, 0.11323315542, -0.01171898422, 
    -0.06499053655, -0.07758659568, -0.07399758157, -0.11503350996, 
    0.02167111711, 0.01904454162, 0.05768779393, 0.05555202379, 
    -0.01031175326, -0.00458313459, 0.17430774591, 0.00481502094, 
    -0.00928412956, 0.09047589183, 0.08917985896, -0.05671203072, 
    -0.05333390954, 0.08541446168, 0.10140397965, -0.02509342995, 
    -0.0369877908, 0.04609635201, 0.06524159499, 0.0845977309, 
    -0.03239032508, -0.03208740616, 0.06264952925, 0.05241547086, 
    -0.03437271856, -0.03437271856, -0.06747523863, -0.01270059491, 
    0.10014629095, -0.02872845706, -0.00950652573, 0.04867308008, 
    0.02486518629, -0.05951115497, -0.02353665674, -0.01967923345, 
    -0.10148651548, -0.00480936518, -0.00098261723, -0.13970798195, 
    -0.00286148145, -0.05492902692, 0.10732815358, 0.11660744219, 
    -0.02016620439), Not.Grooming = c(-0.77046287, 0.773856776, 
    -2.593072768, -2.837675606, -1.680828329, -0.947623773, -0.947623773, 
    -2.607366431, -0.637055341, -1.818396455, 2.170944974, -0.658126752, 
    -0.808243774, 2.377766908, 2.111220276, -0.322326312, 2.218858946, 
    3.920878638, -0.304945754, 1.038591535, 1.752268128, 0.907465624, 
    1.137774798, -3.663486997, 2.350924346, 0.067293462, -1.898454393, 
    -2.497647463, -4.471716512, -1.465081244, -0.232806371, -3.043893581, 
    -2.323908986, 1.437404886, 1.079056696, 1.110865131, 1.404724068, 
    -1.706664294, 0.736746935, -0.005516985, 1.727170333, 1.685228831, 
    1.836016918, 0.46617392, 1.697173771, 1.057314221, 0.933704227, 
    0.482480775, 0.680713089, 0.090780703, 0.680713089, -0.982921741, 
    -2.281900378, 0.97208909, 0.027767791, -0.1628815, -0.530221948, 
    -0.385741863, -0.972251823, 0.002267358, -1.134447998, 0.626424009, 
    -0.722750217, -0.382722075, -0.356550578, -1.851614124, -1.851614124, 
    1.731465143, 0.254319006, 2.043778341, -0.28991392, 1.386940871, 
    0.054207713, 0.594212936, 1.551821303, 3.100704184, 0.327263666, 
    -1.055195336, -1.134447998, 1.730726972), Other = c(0.019502286, 
    -0.290451956, 0.359948884, 0.557840914, 0.117453376, 0.126645924, 
    0.126645924, 0.196486873, 0.152780228, 0.354469789, -0.261430968, 
    0.176448238, -0.007374708, -0.557848621, -0.213674557, -0.005819262, 
    -0.470070992, -0.786078864, 0.006063789, -0.27184265, -0.349418792, 
    -0.338096262, -0.165119403, 0.346566439, -0.344191931, 0.074321265, 
    0.179825379, 0.278407054, 0.593125727, 0.199177375, -0.058900625, 
    0.633875622, 0.428150308, -0.206023441, -0.436958199, -0.291839246, 
    -0.907641911, 0.448567295, -0.127186127, 0.024715134, -0.41634503, 
    -0.330697382, -0.469720666, -0.047494017, -0.301732446, -0.138901021, 
    0.098101379, -0.002063769, -0.02832419, 0.071630763, -0.02832419, 
    0.295110588, 0.347112947, -0.083577573, -0.036886152, 0.189045953, 
    0.467596992, 0.303378276, 0.218879697, 0.092005711, 0.27011134, 
    -0.012909856, 0.262292068, 0.107125772, 0.123422927, 0.299426602, 
    0.299426602, -0.326871824, -0.022088391, -0.428508341, -0.014675497, 
    -0.114462294, 0.087227267, -0.031519161, -0.159318008, -0.397875854, 
    0.101520559, 0.244481505, 0.529968994, -0.32661959)), .Names =   c("Family", 
"Swimming", "Not.Swimming", "Running", "Not.Running", "Fighting", 
"Not.Fighting", "Resting", "Not.Resting", "Hunting", "Not.Hunting", 
"Grooming", "Not.Grooming", "Other"), class = "data.frame", row.names = c(NA, 
-80L))
Alice Hobbs
  • 1,021
  • 1
  • 15
  • 31
  • Could it be that `LDA.scores` contains non-numerical data, or are those simply labels that have a corresponding code in column `Family`? According to the [manual](http://adegenet.r-forge.r-project.org/documentation.html) the input has to be numeric. – noumenal Sep 22 '15 at 18:59
  • Hi nonmenal, In the code I have only selected columns [2:13] to be used in the analysis, so I would have thought that no factors would be included. I changed Family to a numeric character and it does not make any difference. Thank you for your advice. Have you got any more thoughts on the issue? Thank you. – Alice Hobbs Sep 22 '15 at 22:11

0 Answers0