I have a function that outputs a dataframe generated from a RINEX (GPS) file. At present, I get the dataframe to be output into separated satellite (1-32) files. I'd like to access in the first column (either when it's still a dataframe or in these new files) in order to format the date to a timestamp in seconds, like below:
Epochs Epochs
2014-04-27 00:00:00 -> 00000
2014-04-27 00:00:30 -> 00030
2014-04-27 00:01:00 -> 00060
This requires stripping the date away, then converting hh:mm:ss to seconds. I've hit a wall trying to figure out how best to access this first column (Epochs) and then make the conversion on the entire column. The code I have been working on is:
def read_data(self, RINEXfile):
obs_data_chunks = []
while True:
obss, _, _, epochs, _ = self.read_data_chunk(RINEXfile)
if obss.shape[0] == 0:
break
obs_data_chunks.append(pd.Panel(
np.rollaxis(obss, 1, 0),
items=['G%02d' % d for d in range(1, 33)],
major_axis=epochs,
minor_axis=self.obs_types
).dropna(axis=0, how='all').dropna(axis=2, how='all'))
obs_data_chunks_dataframe = obs_data_chunks[0]
for sv in range(32):
sat = obs_data_chunks_dataframe[sv, :]
print "sat_columns: {0}".format(sat.columns[0]) #list header of first column: L1
sat.to_csv(('SV_{0}').format(sv+1), index_label="Epochs", sep='\t')
Do I perform this conversion within the dataframe i.e on "sat", or on the files after using the "to_csv"? I'm a bit lost here. Same question for formatting the columns. See the not-so-nicely formatted columns below:
Epochs L1 L2 P1 P2 C1 S1 S2
2014-04-27 00:00:00 669486.833 530073.33 24568752.516 24568762.572 24568751.442 43.0 38.0
2014-04-27 00:00:30 786184.519 621006.551 24590960.634 24590970.218 24590958.374 43.0 38.0
2014-04-27 00:01:00 902916.181 711966.252 24613174.234 24613180.219 24613173.065 42.0 38.0
2014-04-27 00:01:30 1019689.006 802958.016 24635396.428 24635402.41 24635395.627 42.0 37.0
2014-04-27 00:02:00 1136478.43 893962.705 24657620.079 24657627.11 24657621.828 42.0 37.0
UPDATE: By saying that I've hit a wall trying to figure out how best to access this first column (Epochs), the ""sat" dataframe originally in its header had no "Epochs". It simply had the signals:
L1 L2 P1 P2 C1 S1 S2
The index, (date&time), was missing from the header. In order to overcome this in my csv output files, I "forced" the name with:
sat.to_csv(('SV_{0}').format(sv+1), index_label="Epochs", sep='\t')
I would expect before generating the csv files, I should (but don't know how) be able to access this index (date&time) column and simply convert all dates/times in one swoop, so that the timestamps are outputted.
UPDATE: The epochs are generated in the dataframe in another function as so:
epochs = np.zeros(CHUNK_SIZE, dtype='datetime64[us]')
UPDATE:
def read_data_chunk(self, RINEXfile, CHUNK_SIZE = 10000):
obss = np.empty((CHUNK_SIZE, TOTAL_SATS, len(self.obs_types)), dtype=np.float64) * np.NaN
llis = np.zeros((CHUNK_SIZE, TOTAL_SATS, len(self.obs_types)), dtype=np.uint8)
signal_strengths = np.zeros((CHUNK_SIZE, TOTAL_SATS, len(self.obs_types)), dtype=np.uint8)
epochs = np.zeros(CHUNK_SIZE, dtype='datetime64[us]')
flags = np.zeros(CHUNK_SIZE, dtype=np.uint8)
i = 0
while True:
hdr = self.read_epoch_header(RINEXfile)
#print hdr
if hdr is None:
break
epoch, flags[i], sats = hdr
epochs[i] = np.datetime64(epoch)
sat_map = np.ones(len(sats)) * -1
for n, sat in enumerate(sats):
if sat[0] == 'G':
sat_map[n] = int(sat[1:]) - 1
obss[i], llis[i], signal_strengths[i] = self.read_obs(RINEXfile, len(sats), sat_map)
i += 1
if i >= CHUNK_SIZE:
break
return obss[:i], llis[:i], signal_strengths[:i], epochs[:i], flags[:i]
UPDATE:
My apologies if my description was somewhat vague. Actually I'm modifying code already developed, and I'm not a SW developer so it's a strong learning curve for me too. Let me explain further: the "Epochs" are read from another function:
def read_epoch_header(self, RINEXfile):
epoch_hdr = RINEXfile.readline()
if epoch_hdr == '':
return None
year = int(epoch_hdr[1:3])
if year >= 80:
year += 1900
else:
year += 2000
month = int(epoch_hdr[4:6])
day = int(epoch_hdr[7:9])
hour = int(epoch_hdr[10:12])
minute = int(epoch_hdr[13:15])
second = int(epoch_hdr[15:18])
microsecond = int(epoch_hdr[19:25]) # Discard the least significant digits (use microseconds only).
epoch = datetime.datetime(year, month, day, hour, minute, second, microsecond)
flag = int(epoch_hdr[28])
if flag != 0:
raise ValueError("Don't know how to handle epoch flag %d in epoch header:\n%s", (flag, epoch_hdr))
n_sats = int(epoch_hdr[29:32])
sats = []
for i in range(0, n_sats):
if ((i % 12) == 0) and (i > 0):
epoch_hdr = RINEXfile.readline()
sats.append(epoch_hdr[(32+(i%12)*3):(35+(i%12)*3)])
return epoch, flag, sats
In the above read_data function, these are appended into a dataframe. I basically want to have this dataframe separated by its satellite axis, so that each satellite file has in the first column, the epochs, then the following 7 signals. The last bit of code in the read_data file (below) explains this:
for sv in range(32):
sat = obs_data_chunks_dataframe[sv, :]
print "sat_columns: {0}".format(sat.columns[0]) #list header of first column: L1
sat.to_csv(('SV_{0}').format(sv+1), index_label="Epochs", sep='\t')
The problem here is (1) I want to have the first column as timestamps (so, strip the date, convert so midnight = 00000s and 23:59:59 = 86399s) not as they are now, and (2) ensure the columns are aligned, so I can eventually manipulate these further using a different class to perform other calculations i.e. L1 minus L2 plotted against time, etc.