17

Does bokeh have a simple way to plot the colorbar for a heatmap?

In this example it would be a strip illustrating how colors correspond to values.

In matlab, its called a 'colorbar' and looks like this: enter image description here

bs123
  • 1,183
  • 3
  • 11
  • 21

6 Answers6

11

UPDATE: This is now much easier: see

http://docs.bokeh.org/en/latest/docs/user_guide/annotations.html#color-bars


I'm afraid I don't have a great answer, this should be easier in Bokeh. But I have done something like this manually before.

Because I often want these off my plot, I make a new plot, and then assemble it together with something like hplot or gridplot.

There is an example of this here: https://github.com/birdsarah/pycon_2015_bokeh_talk/blob/master/washmap/washmap/water_map.py#L179

In your case, the plot should be pretty straight forward. If you made a datasource like this:

| value | color
| 1     | blue
.....
| 9     | red

Then you could do something like:

legend = figure(tools=None)
legend.toolbar_location=None
legend.rect(x=0.5, y='value', fill_color='color', width=1, height=1, source=source)
layout = hplot(main, legend)
show(legend)

However, this does rely on you knowing the colors that your values correspond to. You can pass a palette to your heatmap chart call - as shown here: http://docs.bokeh.org/en/latest/docs/gallery/cat_heatmap_chart.html so then you would be able to use that to construct the new data source from that.

I'm pretty sure there's at least one open issue around color maps. I know I just added one for off-plot legends.

bigreddot
  • 33,642
  • 5
  • 69
  • 122
birdsarah
  • 1,165
  • 8
  • 20
  • Update: This is now a LOT easier - http://bokeh.pydata.org/en/latest/docs/user_guide/annotations.html#color-bars – birdsarah Feb 02 '18 at 23:20
8

Since other answers here seem very complicated, here an easily understandable piece of code that generates a colorbar on a bokeh heatmap.

import numpy as np
from bokeh.plotting import figure, show
from bokeh.models import LinearColorMapper, BasicTicker, ColorBar


data = np.random.rand(10,10)

color_mapper = LinearColorMapper(palette="Viridis256", low=0, high=1)

plot = figure(x_range=(0,1), y_range=(0,1))
plot.image(image=[data], color_mapper=color_mapper,
           dh=[1.0], dw=[1.0], x=[0], y=[0])

color_bar = ColorBar(color_mapper=color_mapper, ticker= BasicTicker(),
                     location=(0,0))

plot.add_layout(color_bar, 'right')

show(plot)

enter image description here

ImportanceOfBeingErnest
  • 321,279
  • 53
  • 665
  • 712
6

Since the 0.12.3 version Bokeh has the ColorBar.

This documentation was very useful to me:

http://docs.bokeh.org/en/dev/docs/user_guide/annotations.html#color-bars

bigreddot
  • 33,642
  • 5
  • 69
  • 122
Natacha
  • 1,132
  • 16
  • 23
4

To do this I did the same as @birdsarah. As an extra tip though if you use the rect method as your colour map, then use the rect method once again in the colour bar and use the same source. The end result is that you can select sections of the colour bar and it also selects in your plot.

Try it out:

http://simonbiggs.github.io/electronfactors

SimonBiggs
  • 816
  • 1
  • 8
  • 18
3

Here is some code loosely based on birdsarah's response for generating a colorbar:

def generate_colorbar(palette, low=0, high=15, plot_height = 100, plot_width = 500, orientation = 'h'):

    y = np.linspace(low,high,len(palette))
    dy = y[1]-y[0]
    if orientation.lower()=='v':
        fig = bp.figure(tools="", x_range = [0, 1], y_range = [low, high], plot_width = plot_width, plot_height=plot_height)
        fig.toolbar_location=None
        fig.xaxis.visible = None
        fig.rect(x=0.5, y=y, color=palette, width=1, height = dy)
    elif orientation.lower()=='h':
        fig = bp.figure(tools="", y_range = [0, 1], x_range = [low, high],plot_width = plot_width, plot_height=plot_height)
        fig.toolbar_location=None
        fig.yaxis.visible = None
        fig.rect(x=y, y=0.5, color=palette, width=dy, height = 1)
    return fig

Also, if you are interested in emulating matplot lib colormaps, try using this:

import matplotlib as mpl
def return_bokeh_colormap(name):
    cm = mpl.cm.get_cmap(name)
    colormap = [rgb_to_hex(tuple((np.array(cm(x))*255).astype(np.int))) for x in range(0,cm.N)]
    return colormap
def rgb_to_hex(rgb):
    return '#%02x%02x%02x' % rgb[0:3]
duckdive
  • 31
  • 2
  • 1
    This should be the answer - might need to be a little careful with the plot size though to make sure it matches your main plot, and I needed the width for a vertical bar to be larger than 120 to display properly. Also, to use bk OR mpl palette strings I just used ``palette = getattr(bk.palettes, palette) if hasattr(bk.palettes, palette) else return_bokeh_colormap(palette)`` – user2561747 May 20 '16 at 22:09
  • @user2561747, I agree. This is the answer that worked for me. – mbadawi23 Aug 25 '16 at 00:03
0

This is high on my wish list as well. It would also need to automatically adjust the range if the plotted data changed (e.g. moving through one dimension of a 3D data set). The code below does something which people might find useful. The trick is to add an extra axis to the colourbar which you can control through a data source when the data changes.

import numpy

from bokeh.plotting import Figure

from bokeh.models import ColumnDataSource, Plot, LinearAxis
from bokeh.models.mappers import LinearColorMapper
from bokeh.models.ranges import Range1d
from bokeh.models.widgets import Slider
from bokeh.models.widgets.layouts import VBox

from bokeh.core.properties import Instance

from bokeh.palettes import RdYlBu11

from bokeh.io import curdoc

class Colourbar(VBox):

    plot = Instance(Plot)
    cbar = Instance(Plot)

    power = Instance(Slider)

    datasrc = Instance(ColumnDataSource)
    cbarrange = Instance(ColumnDataSource)

    cmap = Instance(LinearColorMapper)

    def __init__(self):

        self.__view_model__ = "VBox"
        self.__subtype__ = "MyApp"

        super(Colourbar,self).__init__()

        numslices = 6
        x = numpy.linspace(1,2,11)
        y = numpy.linspace(2,4,21)
        Z = numpy.ndarray([numslices,y.size,x.size])
        for i in range(numslices):
            for j in range(y.size):
                for k in range(x.size):
                    Z[i,j,k] = (y[j]*x[k])**(i+1) + y[j]*x[k]

        self.power = Slider(title = 'Power',name = 'Power',start = 1,end = numslices,step = 1,
                            value = round(numslices/2))
        self.power.on_change('value',self.inputchange)

        z = Z[self.power.value]
        self.datasrc = ColumnDataSource(data={'x':x,'y':y,'z':[z],'Z':Z})

        self.cmap = LinearColorMapper(palette = RdYlBu11)

        r = Range1d(start = z.min(),end = z.max())        
        self.cbarrange = ColumnDataSource(data = {'range':[r]})

        self.plot = Figure(title="Colourmap plot",x_axis_label = 'x',y_axis_label = 'y',
                           x_range = [x[0],x[-1]],y_range=[y[0],y[-1]],
                           plot_height = 500,plot_width = 500)

        dx = x[1] - x[0]
        dy = y[1] - y[0]

        self.plot.image('z',source = self.datasrc,x = x[0]-dx/2, y = y[0]-dy/2,
                        dw = [x[-1]-x[0]+dx],dh = [y[-1]-y[0]+dy],
                        color_mapper = self.cmap)

        self.generate_colorbar()

        self.children.append(self.power)
        self.children.append(self.plot)
        self.children.append(self.cbar)

    def generate_colorbar(self,cbarlength = 500,cbarwidth = 50):

        pal = RdYlBu11

        minVal = self.datasrc.data['z'][0].min()
        maxVal = self.datasrc.data['z'][0].max()
        vals = numpy.linspace(minVal,maxVal,len(pal))

        self.cbar = Figure(tools = "",x_range = [minVal,maxVal],y_range = [0,1],
                           plot_width = cbarlength,plot_height = cbarwidth)

        self.cbar.toolbar_location = None 
        self.cbar.min_border_left = 10
        self.cbar.min_border_right = 10
        self.cbar.min_border_top = 0
        self.cbar.min_border_bottom = 0
        self.cbar.xaxis.visible = None
        self.cbar.yaxis.visible = None
        self.cbar.extra_x_ranges = {'xrange':self.cbarrange.data['range'][0]}
        self.cbar.add_layout(LinearAxis(x_range_name = 'xrange'),'below')

        for r in self.cbar.renderers:
            if type(r).__name__ == 'Grid':
                r.grid_line_color = None

        self.cbar.rect(x = vals,y = 0.5,color = pal,width = vals[1]-vals[0],height = 1)

    def updatez(self):

        data = self.datasrc.data
        newdata = data
        z = data['z']
        z[0] = data['Z'][self.power.value - 1]
        newdata['z'] = z
        self.datasrc.trigger('data',data,newdata)

    def updatecbar(self):

        minVal = self.datasrc.data['z'][0].min()
        maxVal = self.datasrc.data['z'][0].max()
        self.cbarrange.data['range'][0].start = minVal
        self.cbarrange.data['range'][0].end = maxVal

    def inputchange(self,attrname,old,new):

        self.updatez()
        self.updatecbar()

curdoc().add_root(Colourbar())
hal
  • 1
  • 1