I have a large dataset of around 20 million points (x,y,z) in a 3-dimensional space. I know these points are organized in dense regions, but that these regions vary in size. I think a standard unsupervised 3D clustering should solve my problem.
Since I can't estimate the number of clusters a priori, I tried using k-means with a wide range for k, but it is slow and also, I would have to estimate how significant each k-partition is. Basically, my question is: how can I extract the most significant partition of my points into clusters?