I wonder how query-level features (such as term count in query) are useful? Because, query-level features are ignored while generating model file.
Train file;
3 qid:1 1:2 2:1 3:0 4:0.2 5:0
2 qid:1 1:2 2:0 3:1 4:0.1 5:1
1 qid:1 1:2 2:1 3:0 4:0.4 5:0
1 qid:1 1:2 2:0 3:1 4:0.3 5:0
1 qid:2 1:3 2:0 3:1 4:0.2 5:0
2 qid:2 1:3 2:0 3:1 4:0.4 5:0
1 qid:2 1:3 2:0 3:1 4:0.1 5:0
1 qid:2 1:3 2:0 3:1 4:0.2 5:0
In this file, 1st feature is query-level feature which is same across same query - different item pairs.
It has trained by SVM-rank. Then, the generated model file ignores 1st feature, and starts from 2nd feature.
Generated model file;
1 2:0.50956941 3:-0.50956941 4:0.1913875 5:1.0382775 #