I am reading through Okasaki's Purely Functional Data Structures and am trying to do some of the exercises. One of them is to prove that binomial heap merge
takes O(log n)
time where n
is the number of nodes in the heap.
functor BinomialHeap (Element:ORDERED):HEAP=
struct
structure Elem=Element
datatype Tree = Node of int*Elem.T*Tree list
type Heap = Tree list
fun link (t1 as Node (r,x1,c1), t2 as Node (_,x2,c2))=
if Elem.leq(x1,x2)
then Node (r+1,x1,t2::c1)
else Node (r+1,x2,t1::c2)
fun insTree (t,[])=[t]
|insTree (t,ts as t'::ts')=
if rank t < rank t' then t::ts else insTree(link(t,t'),ts')
fun insert (x,ts)=insTree(Node(0,x,[]),ts) (*just for reference*)
fun merge (ts1,[])=ts1
|merge ([],ts2)=ts2
|merge (ts1 as t1::ts1', ts2 as t2:ts2')=
if rank t1 < rank t2 then t1::merge(ts1',ts2)
else if rank t2 < rank t1 then t2::merge(ts1,ts2')
else insTree (link(t1,t2), merge (ts1',ts2'))
end
It is clear that merge
will call itself max(numNodes ts1, numNodes ts2)
times, but since insTree
is O(log n)
worst case, can you explain how merge
is O(log n)
?