I am making an automated quadcopter: no radio transmitter-receiver and the quacopter flies on its own with pre-programmed orders.
All most all quadcopter implement PID on throttle/yaw/pitch/roll as these 4 axes are directly on an remote controller. However this is a bit inconvenient for an automated one without a controller. As an automated quadcopter without user input, velocities along x/y/z axis are of more concern, because:
keeping balance(yaw/pitch/roll=0) doesn't mean keeping still, as first, there will be some error in manufacture so it might still have some acceleration. Second, even there's no acceleration, it can have speed, causing it to drift in space. And as there's no user input, it can not fix the drift on it's own. Besides, if there's wind, it might got blow away, even it thinks it's balanced.
Orders are mostly given in "go to position(x,y)" or "keeping velocity x, fly above position(x,y) and start camera video capture." or so. These orders can't be translated into yaw/pitch/roll directly.
So basically I have two ideas:
Implement PID on yaw/pitch/roll/height and use a second PID loop to control velocity. The second PID loop take desired velocity and current velocity as input and output desired yaw/pitch/roll for first loop.
Implement PID directly on velocity. The pid loop take desired velocity and current velocity(by integrating acceleration from accelerometer) as input and output PWM width for 4 motors.
Have anyone tried idea 2? Will this work?