I am trying to code a multicode Markov Chain in C++ and while I am trying to take advantage of the many CPUs (up to 24) to run a different chain in each one, I have a problem in picking a right container to gather the result the numerical evaluations on each CPU. What I am trying to measure is basically the average value of an array of boolean variables. I have tried coding a wrapper around a `std::vector`` object looking like that:
struct densityStack {
vector<int> density; //will store the sum of boolean varaibles
int card; //will store the amount of elements we summed over for normalizing at the end
densityStack(int size){ //constructor taking as only parameter the size of the array, usually size = 30
density = vector<int> (size, 0);
card = 0;
}
void push_back(vector<int> & toBeAdded){ //method summing a new array (of measurements) to our stack
for(auto valStack = density.begin(), newVal = toBeAdded.begin(); valStack != density.end(); ++valStack, ++ newVal)
*valStack += *newVal;
card++;
}
void savef(const char * fname){ //method outputting into a file
ofstream out(fname);
out.precision(10);
out << card << "\n"; //saving the cardinal in first line
for(auto val = density.begin(); val != density.end(); ++val)
out << << (double) *val/card << "\n";
out.close();
}
};
Then, in my code I use a single densityStack
object and every time a CPU core has data (can be 100 times per second) it will call push_back
to send the data back to densityStack
.
My issue is that this seems to be slower that the first raw approach where each core stored each array of measurement in file and then I was using some Python script to average and clean (I was unhappy with it because storing too much information and inducing too much useless stress on the hard drives).
Do you see where I can be losing a lot of performance? I mean is there a source of obvious overheading? Because for me, copying back the vector even at frequencies of 1000Hz should not be too much.