The shape and positions of all the polygons are known beforehand. The polygons are not overlapping and will be of different colors and shapes, and there could be quite many of them. The polygons are defined in floating point based coordinates and will be painted on top of a JPEG photo as annotation.
How could I create the resulting image file as fast as possible after I get to know which color I should give each polygon?
If it would save time I would like to perform as much as possible of the computations beforehand. All information regarding geometry and positions of the polygons are known in advance. The JPEG photo is also known in advance. The only information not known beforehand is the color of each polygon.
The JPEG photo has a size of 250x250 pixels, so that would also be the image size of the resulting rasterised image.
The computations will be done on a Linux computer with a standard graphics card, so OpenGL might be a viable option. I know there are also rasterisation libraries like Cairo that could be used to paint polygons. What I wonder is if I could take advantage of the fact that I know so much of the input in advance and use that to speed up the computation. The only thing missing is the color of each polygon.
Preferably I would like to find a solution that would only precompute things in the form of data files. In other words as soon as the polygon colors are known, the algorithm would load the other information from datafiles (JPEG file, polygon geometry file and/or possibly precomputed datafiles). Of course it would be faster to start the computation out with a "warm" state ready in the GPU/CPU/RAM but I'd like to avoid that. The choice of programming language is not so import, but could for instance be C++.
To give some more background information: The JavaScript library OpenSeadragon that is running in a web browser requests image tiles from a web server. The idea is that measurement points (i.e. the polygons) could be plotted on-the-fly on to pregenerated Zooming Images (DZI format) by the web server. So for one image tile the algorithm would only need to be run one time. The aim is low latency.