I found that the result of LDA in OpenCV is different from other libraries. For example, the input data was
DATA (13 data samples with 4 dimensions)
7 26 6 60
1 29 15 52
11 56 8 20
11 31 8 47
7 52 6 33
11 55 9 22
3 71 17 6
1 31 22 44
2 54 18 22
21 47 4 26
1 40 23 34
11 66 9 12
10 68 8 12
LABEL
0 1 2 0 1 2 0 1 2 0 1 2 0
The OpenCV code is
Mat data = (Mat_<float>(13, 4) <<\
7, 26, 6, 60,\
1, 29, 15, 52,\
11, 56, 8, 20,\
11, 31, 8, 47,\
7, 52, 6, 33,\
11, 55, 9, 22,\
3, 71, 17, 6,\
1, 31, 22, 44,\
2, 54, 18, 22,\
21, 47, 4, 26,\
1, 40, 23, 34,\
11, 66, 9, 12,\
10, 68, 8, 12);
Mat mean;
reduce(data, mean, 0, CV_REDUCE_AVG);
mean.convertTo(mean, CV_64F);
Mat label(data.rows, 1, CV_32SC1);
for (int i=0; i<label.rows; i++)
label.at<int>(i) = i%3;
LDA lda(data, label);
Mat projection = lda.subspaceProject(lda.eigenvectors(), mean, data);
The matlab code is (used Matlab Toolbox for Dimensionality Reduction)
cd drtoolbox\techniques\
load hald
label=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
[projection, trainedlda] = lda(ingredients, label)
The eigenvalues are
OpenCV (lda.eigenvectors())
0.4457 4.0132
0.4880 3.5703
0.5448 3.3466
0.5162 3.5794
Matlab Toolbox for Dimensionality Reduction (trainedlda.M)
0.5613 0.7159
0.6257 0.6203
0.6898 0.5884
0.6635 0.6262
Then the projections of data are
OpenCV
1.3261 7.1276
0.8892 -4.7569
-1.8092 -6.1947
-0.0720 1.1927
0.0768 3.3105
-0.7200 0.7405
-0.3788 -4.7388
1.5490 -2.8255
-0.3166 -8.8295
-0.8259 9.8953
1.3239 -3.1406
-0.5140 4.2194
-0.5285 4.0001
Matlab Toolbox for Dimensionality Reduction
1.8030 1.3171
1.2128 -0.8311
-2.3390 -1.0790
-0.0686 0.3192
0.1583 0.5392
-0.9479 0.1414
-0.5238 -0.9722
1.9852 -0.4809
-0.4173 -1.6266
-1.1358 1.9009
1.6719 -0.5711
-0.6996 0.7034
-0.6993 0.6397
The eigenvectors and projections are different even though these LDAs have the same data. I believe there are 2 possibilities.
- One of the libraries is wrong.
- I am doing it wrong.
Thank you!