I am trying to fit a model having as predictor the variables TNST
and Seff
and as response the variable AUCMET
.
The result of the fitting is:
mdl1 =
Linear regression model:
AUCMET ~ 1 + TNST + Seff
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 1251.5 72.176 17.34 1.4406e-58
TNST -2.3058 0.16045 -14.371 1.9579e-42
Seff 13.087 1.0748 12.176 9.4907e-32
Number of observations: 932, Error degrees of freedom: 929
Root Mean Squared Error: 322
R-squared: 0.197, Adjusted R-Squared 0.195
F-statistic vs. constant model: 114, p-value = 5.36e-45
The result from the anova analisis is
anova(mdl1)
ans =
SumSq DF MeanSq F pValue
TNST 2.1395e+07 1 2.1395e+07 206.52 1.9579e-42
Seff 1.5359e+07 1 1.5359e+07 148.25 9.4907e-32
Error 9.6243e+07 929 1.036e+05
The output of the diagnostic plot is
plotDiagnostics(mdl)
Could you help me to interpret this result? I see that all the p are < 0.05 so they variables are important for the model.
Is it a good model? what should I look at to understand it?