This answer is an adaptation of this other answer I wrote earlier. The first part is exactly the same, but the others are specific for this question.
Here's an implemented a O(n log n + q log n) version using a simplified version of a segment tree.
Creating the segment tree: O(n)
In practice, what it does is to take an array, let's say:
A = [5,1,7,2,3,7,3,1]
And construct an array-backed tree that looks like this:

In the tree, the first number is the value and the second is the index where it appears in the array. Each node is the maximum of its two children. This tree is backed by an array (pretty much like a heap tree) where the children of the index i
are in the indexes i*2+1
and i*2+2
.
Then, for each element, it becomes easy to find the nearest greater elements (before and after each element).
To find the nearest greater element to the left, we go up in the tree searching for the first parent where the left node has value greater and the index lesser than the argument. The answer must be a child of this parent, then we go down in the tree looking for the rightmost node that satisfies the same condition.
Similarly, to find the nearest greater element to the right, we do the same, but looking for a right node with an index greater than the argument. And when going down, we look for the leftmost node that satisfies the condition.
Creating the cumulative frequency array: O(n log n)
From this structure, we can compute the frequency array, that tells how many times each element appears as maximum in the subarray list. We just have to count how many lesser elements are on the left and on the right of each element and multiply those values. For the example array ([1, 2, 3]
), this would be:
[(1, 1), (2, 2), (3, 3)]
This means that 1 appears only once as maximum, 2 appears twice, etc.
But we need to answer range queries, so it's better to have a cumulative version of this array, that would look like:
[(1, 1), (2, 3), (3, 6)]
The (3, 6)
means, for example, that there are 6 subarrays with maxima less than or equal to 3.
Answering q
queries: O(q log n)
Then, to answer each query, you just have to make binary searches to find the value you want. For example. If you need to find the exact number of 3
, you may want to do: query(F, 3) - query(F, 2)
. If you want to find those lesser than 3, you do: query(F, 2)
. If you want to find those greater than 3: query(F, float('inf')) - query(F, 3)
.
Implementation
I've implemented it in Python and it seems to work well.
import sys, random, bisect
from collections import defaultdict
from math import log, ceil
def make_tree(A):
n = 2**(int(ceil(log(len(A), 2))))
T = [(None, None)]*(2*n-1)
for i, x in enumerate(A):
T[n-1+i] = (x, i)
for i in reversed(xrange(n-1)):
T[i] = max(T[i*2+1], T[i*2+2])
return T
def print_tree(T):
print 'digraph {'
for i, x in enumerate(T):
print ' ' + str(i) + '[label="' + str(x) + '"]'
if i*2+2 < len(T):
print ' ' + str(i)+ '->'+ str(i*2+1)
print ' ' + str(i)+ '->'+ str(i*2+2)
print '}'
def find_generic(T, i, fallback, check, first, second):
j = len(T)/2+i
original = T[j]
j = (j-1)/2
#go up in the tree searching for a value that satisfies check
while j > 0 and not check(T[second(j)], original):
j = (j-1)/2
#go down in the tree searching for the left/rightmost node that satisfies check
while j*2+1<len(T):
if check(T[first(j)], original):
j = first(j)
elif check(T[second(j)], original):
j = second(j)
else:
return fallback
return j-len(T)/2
def find_left(T, i, fallback):
return find_generic(T, i, fallback,
lambda a, b: a[0]>b[0] and a[1]<b[1], #value greater, index before
lambda j: j*2+2, #rightmost first
lambda j: j*2+1 #leftmost second
)
def find_right(T, i, fallback):
return find_generic(T, i, fallback,
lambda a, b: a[0]>=b[0] and a[1]>b[1], #value greater or equal, index after
lambda j: j*2+1, #leftmost first
lambda j: j*2+2 #rightmost second
)
def make_frequency_array(A):
T = make_tree(A)
D = defaultdict(lambda: 0)
for i, x in enumerate(A):
left = find_left(T, i, -1)
right = find_right(T, i, len(A))
D[x] += (i-left) * (right-i)
F = sorted(D.items())
for i in range(1, len(F)):
F[i] = (F[i][0], F[i-1][1] + F[i][1])
return F
def query(F, n):
idx = bisect.bisect(F, (n,))
if idx>=len(F): return F[-1][1]
if F[idx][0]!=n: return 0
return F[idx][1]
F = make_frequency_array([1,2,3])
print query(F, 3)-query(F, 2) #3 3
print query(F, float('inf'))-query(F, 4) #1 4
print query(F, float('inf'))-query(F, 1) #1 1
print query(F, 2) #2 3