In an attempt to solve the 3rd problem on project Euler (https://projecteuler.net/problem=3), I decided to implement Pollard's Rho algorithm (at least part of it, I'm planning on including the cycling later). The odd thing is that it works for numbers such as: 82123(factor = 41) and 16843009(factor 257). However when I try the project Euler number: 600851475143, I end up getting 71 when the largest prime factor is 6857. Here's my implementation(sorry for wall of code and lack of type casting):
#include <iostream>
#include <math.h>
#include <vector>
using namespace std;
long long int gcd(long long int a,long long int b);
long long int f(long long int x);
int main()
{
long long int i, x, y, N, factor, iterations = 0, counter = 0;
vector<long long int>factors;
factor = 1;
x = 631;
N = 600851475143;
factors.push_back(x);
while (factor == 1)
{
y = f(x);
y = y % N;
factors.push_back(y);
cout << "\niteration" << iterations << ":\t";
i = 0;
while (factor == 1 && (i < factors.size() - 1))
{
factor = gcd(abs(factors.back() - factors[i]), N);
cout << factor << " ";
i++;
}
x = y;
//factor = 2;
iterations++;
}
system("PAUSE");
return 0;
}
long long int gcd(long long int a, long long int b)
{
long long int remainder;
do
{
remainder = a % b;
a = b;
b = remainder;
} while (remainder != 0);
return a;
}
long long int f(long long int x)
{
//x = x*x * 1024 + 32767;
x = x*x + 1;
return x;
}