I want to compute the eigenvalues for a generalized eigenvalue problem with lambda * M * v = K * v, where lambda is the eigenvalue, v is an eigenvector, and M and K are matrices. Let's say we have
K =
1.8000 + 0.0000i -1.0970 + 0.9550i
-1.0970 - 0.9550i 1.8000 + 0.0000i
M =
209 0
0 209
In Octave, if I do [V,D]=eig(K,M)
, I get:
V =
0.53332 - 0.46429i -0.53332 + 0.46429i
0.70711 + 0.00000i 0.70711 + 0.00000i
D =
Diagonal Matrix
0.34555 0
0 3.25445
However, if I do scipy.linalg.eig(K, b=M) using Scipy in python, I get a different result:
>>> import numpy as np
>>> import scipy as sp
>>> import scipy.linalg
>>> K = np.mat([[1.8, -1.097+0.995j], [-1.097-0.955j, 1.8]])
>>> M = np.mat([[209., 0.], [0., 209.]])
>>> M
matrix([[ 209., 0.],
[ 0., 209.]])
>>> K
matrix([[ 1.800+0.j , -1.097+0.955j],
[-1.097-0.955j, 1.800+0.j ]])
>>> D, V = sp.linalg.eig(K, b=M)
>>> D
array([ 0.00165333 -1.99202696e-19j, 0.01557155 +0.00000000e+00j])
>>> V
array([[ 0.70710678 +0.00000000e+00j, -0.53332494 +4.64289256e-01j],
[ 0.53332494 +4.64289256e-01j, 0.70710678 -8.38231384e-18j]])
The eigenvalues should be the ones in the D array.
Why are the eigenvalues different in these two examples? Am I misunderstanding something?
edit: corrected typo and redid calculation.
edit: I used Octave 3.8.2. in Mac OS X 10.10.3.