I would like to get pairwise comparisons of adjusted means using lsmeans()
, while supplying a robust coefficient-covariance matrix (e.g. vcovHC
). Usually functions on regression models provide a vcov
argument, but I can't seem to find any such argument in the lsmeans
package.
Consider this dummy example, originally from CAR:
require(car)
require(lmtest)
require(sandwich)
require(lsmeans)
mod.moore.2 <- lm(conformity ~ fcategory + partner.status, data=Moore)
coeftest(mod.moore.2)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.197778 1.372669 7.4292 4.111e-09 ***
## fcategorymedium -1.176000 1.902026 -0.6183 0.539805
## fcategoryhigh -0.080889 1.809187 -0.0447 0.964555
## partner.statushigh 4.606667 1.556460 2.9597 0.005098 **
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
coeftest(mod.moore.2, vcov.=vcovHAC)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.197778 0.980425 10.4014 4.565e-13 ***
## fcategorymedium -1.176000 1.574682 -0.7468 0.459435
## fcategoryhigh -0.080889 2.146102 -0.0377 0.970117
## partner.statushigh 4.606667 1.437955 3.2036 0.002626 **
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
lsmeans(mod.moore.2, list(pairwise ~ fcategory), adjust="none")[[2]]
## contrast estimate SE df t.ratio p.value
## low - medium 1.17600000 1.902026 41 0.618 0.5398
## low - high 0.08088889 1.809187 41 0.045 0.9646
## medium - high -1.09511111 1.844549 41 -0.594 0.5560
##
## Results are averaged over the levels of: partner.status
As you can see, lsmeans()
estimates p-values using the default variance-covariance matrix.
How can I obtain pairwise contrasts using the vcovHAC
variance estimate?