I am trying to analyze a dataset where each subject has 12 repeated measures (quarterly over 3 years). I want to extract subject specific estimates of the time slope to evaluate if the subjects are changing significantly over time.
The code I currently have consistently suggests that each subject is demonstrating a highly significant increase over time. This seems unlikely but I'm not sure how to adjust my syntax to run a more accurate model. Does anyone know how/why this model would find the slope coefficient for time significant for all cases?
A quick description of the study: We are creating a trending report which should flag procedure codes (subjects) that are showing a significant increase in the number of times it was billed over the time period being analyzed (3 years, by quarter). The outcome variable is being treated as a count (bounded at 0 but not necessarily whole numbers).
%macro Zeroes(numzeroes);
%local i;
%do i = 1 %to %eval(&numzeroes-1);
0
%end;
1;
%mend;
%macro EstimateStatement(numsubjects=);
%local i;
proc glimmix data=procdata11;
class code;
model billing_count=period_count / dist=NB link=log
solution ddfm=betwithin;
random intercept period_count / sub=code type=AR(1);
random _residual_;
%do i = 1 %to &numsubjects;
estimate "Slope for Code &i" period_count 1 | period_count 1 / subject %Zeroes(&i);
%end;
ods output estimates=sscoeff;
run;
%mend;
%EstimateStatement(numsubjects=&num_codes)
Any help on making this model more accurate and efficient would be greatly appreciated!
Thanks!