What is the best way to use pandas.pivot_table to calculate aggregated functions over the whole table without providing the grouping?
For example, if I want to calculate the sum of A,B,C into one table with a single row without grouping by any of the columsn:
>>> x = pd.DataFrame({'A':[1,2,3],'B':[8,7,6],'C':[0,3,2]})
>>> x
A B C
0 1 8 0
1 2 7 3
2 3 6 2
>>> x.pivot_table(values=['A','B','C'],aggfunc=np.sum)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/tool/pandora64/.package/python-2.7.5/lib/python2.7/site-packages/pandas/tools/pivot.py", line 103, in pivot_table
grouped = data.groupby(keys)
File "/tool/pandora64/.package/python-2.7.5/lib/python2.7/site-packages/pandas/core/generic.py", line 2434, in groupby
sort=sort, group_keys=group_keys, squeeze=squeeze)
File "/tool/pandora64/.package/python-2.7.5/lib/python2.7/site-packages/pandas/core/groupby.py", line 789, in groupby
return klass(obj, by, **kwds)
File "/tool/pandora64/.package/python-2.7.5/lib/python2.7/site-packages/pandas/core/groupby.py", line 238, in __init__
level=level, sort=sort)
File "/tool/pandora64/.package/python-2.7.5/lib/python2.7/site-packages/pandas/core/groupby.py", line 1622, in _get_grouper
raise ValueError('No group keys passed!')
ValueError: No group keys passed!
Also, I would like to use custom aggfunc, and the above np.sum is just an example.
Thanks.