0

I've been working on an internal developer tool on and off for a few weeks now, but I'm running into an ugly stumbling block I haven't managed to find a good solution for. I'm hoping someone can offer some ideas or guidance on the best ways to use the existing frameworks in .NET.

Background: the purpose of this tool is to load multiple different types of log files (Windows Event Log, IIS, SQL trace, etc.) to the same database table so they can be sorted and examined together. My personal goal is to make the entire thing streamlined so that we only make a single pass and do not cache the entire log either in memory or to disk. This is important when log files reach hundreds of MB or into the GB range. Fast performance is good, but slow and unobtrusive (allowing you to work on something else in the meantime) is better than running faster but monopolizing the system in the process, so I've focused on minimizing RAM and disk usage.

I've iterated through a few different designs so far trying to boil it down to something simple. I want the core of the log parser--the part that has to interact with any outside library or file to actually read the data--to be as simple as possible and conform to a standard interface, so that adding support for a new format is as easy as possible. Currently, the parse method returns an IEnumerable<Item> where Item is a custom struct, and I use yield return to minimize the amount of buffering.

However, we quickly run into some ugly constraints: the libraries provided (generally by Microsoft) to process these file formats. The biggest and ugliest problem: one of these libraries only works in 64-bit. Another one (Microsoft.SqlServer.Management.Trace TraceFile for SSMS logs) only works in 32-bit. As we all know, you can't mix and match 32- and 64-bit code. Since the entire point of this exercise is to have one utility that can handle any format, we need to have a separate child process (which in this case is handling the 32-bit-only portion).

The end result is that I need the 64-bit main process to start up a 32-bit child, provide it with the information needed to parse the log file, and stream the data back in some way that doesn't require buffering the entire contents to memory or disk. At first I tried using stdout, but that fell apart with any significant amount of data. I've tried using WCF, but it's really not designed to handle the "service" being a child of the "client", and it's difficult to get them synchronized backwards from how they want to work, plus I don't know if I can actually make them stream data correctly. I don't want to use a mechanism that opens up unsecured network ports or that could accidentally crosstalk if someone runs more than one instance (I want that scenario to work normally--each 64-bit main process would spawn and run its own child). Ideally, I want the core of the parser running in the 32-bit child to look the same as the core of a parser running in the 64-bit parent, but I don't know if it's even possible to continue using yield return, even with some wrapper in place to help manage the IPC. Is there any existing framework in .NET that makes this relatively easy?

qid
  • 1,883
  • 10
  • 15

2 Answers2

1

WCF does have a P2P mode however if all your processes are local machine you are better off with IPC such as named pipes due to the latter running in Kernel Mode and does not have the messaging overhead of the former.

Failing that you could try COM which should not have a problem talking between 32 and 64 bit processes. - Tell me more

Community
  • 1
  • 1
0

In case anyone stumbles across this, I'll post the solution that we eventually settled on. The key was to redefine the inter-process WCF service interface to be different from the intra-process IEnumerable interface. Instead of attempting to yield return across process boundaries, we stuck a proxy layer in between that uses an enumerator, so we can call a "give me an item" method over and over again. It's likely this has more performance overhead than a true streaming solution, since there's a method call for every item, but it does seem to get the job done, and it doesn't leak or consume memory.

We did follow Micky's suggestion of using named pipes, but still within WCF. We're also using named semaphores to coordinate the two processes, so we don't attempt to make service calls until the "child service" has finished starting up.

qid
  • 1,883
  • 10
  • 15