In summary, distinct()
and dropDuplicates()
methods remove duplicates with one difference, which is essential.
dropDuplicates()
is more suitable by considering only a subset of the columns
data = [("James","","Smith","36636","M",60000),
("James","Rose","","40288","M",70000),
("Robert","","Williams","42114","",400000),
("Maria","Anne","Jones","39192","F",500000),
("Maria","Mary","Brown","","F",0)]
columns = ["first_name","middle_name","last_name","dob","gender","salary"]
df = spark.createDataFrame(data = data, schema = columns)
df.printSchema()
df.show(truncate=False)
df.groupBy('first_name').agg(count(
'first_name').alias("count_duplicates")).filter(
col('count_duplicates') >= 2).show()
df.dropDuplicates(['first_name']).show()
# output
+----------+-----------+---------+-----+------+------+
|first_name|middle_name|last_name|dob |gender|salary|
+----------+-----------+---------+-----+------+------+
|James | |Smith |36636|M |60000 |
|James |Rose | |40288|M |70000 |
|Robert | |Williams |42114| |400000|
|Maria |Anne |Jones |39192|F |500000|
|Maria |Mary |Brown | |F |0 |
+----------+-----------+---------+-----+------+------+
+----------+----------------+
|first_name|count_duplicates|
+----------+----------------+
| James| 2|
| Maria| 2|
+----------+----------------+
+----------+-----------+---------+-----+------+------+
|first_name|middle_name|last_name| dob|gender|salary|
+----------+-----------+---------+-----+------+------+
| James| | Smith|36636| M| 60000|
| Maria| Anne| Jones|39192| F|500000|
| Robert| | Williams|42114| |400000|
+----------+-----------+---------+-----+------+------+