I have a function f(x,y,v,w) that I've evaluated over a range of values in (x,y,v,w) and stored in a 4D NumPy array, let's call it A.
I want a way to find two 2D arrays, V_best and W_best that hold the values of v,w that minimize f(x,y,v,w) over x,y. I've approached this by attempting to retrieve the indices of the values of (v,w) that give the minimum values of A over (x,y).
I've tried to use argmin for this, but I can't wrap my head around what the 3D arrays I get in return are, or how to use them in this context. As with many things I'm sure there's an obvious way to do this.
What I have is,
x = np.linspace(0,1,N1)
y = np.linspace(0,1,N2)
v = np.linspace(-5,5,N3)
w = np.linspace(-5,5,N4)
V,W,X,Y = np.meshgrid(v,w,x,y)
VALUEGRID = myfunc(V,W,X,Y)
V_besti = np.argmin(VALUEGRID,axis=0)
W_besti = np.argmin(VALUEGRID,axis=1)
Ideally, V_best and W_best will be of shape (N1,N2), corresponding to the dimensions of the range of x,y. I hope this is sufficiently clear.
Thank you in advance.