I am using SparkSQL in python. I have created a partitioned table (~few hundreds of partitions) stored it into Hive Internal Table using the hiveContext. The hive warehouse is located in S3.
When I simply do "df = hiveContext.table("mytable"). It would take over a minute to going through all the partitions the first time. I thought the metastore stored all the metadata. Why would spark still need to going through each partition? Is it possible to avoid this step so my startup can be faster?