I'm Trying to convert a code written in Cuda to openCL and run into some trouble. My final goal is to implement the code on an Odroid XU3 board with a Mali T628 GPU.
In order to simplify the transition and save time trying to debug openCL kernels I've done the following steps:
- Implement the code in Cuda and test it on a Nvidia GeForce 760
- Implement the code in openCL and test it on a Nvidia GeForce 760
- test the openCL code on an Odroid XU3 board with a Mali T628 GPU.
I know that different architectures may have different optimizations but that isn't my main concern for now. I manged to run the openCL code on my Nvidia GPU with no apparent issues but keep getting strange errors when trying to run the code on the Odroid board. I know that different architectures have different handling of exceptions etc. but I'm not sure how to solve those.
Since the openCL code works on my Nvidia I assume that I managed to do the correct transition between thread/blocks -> workItems/workGroups etc. I already fixed several issues that relate to the cl_device_max_work_group_size issue so that can't be the cuase.
When running the code i'm getting a "CL_OUT_OF_RESOURCES" error. I've narrowed the cause of the error to 2 lines in the code but not sure to fix those issues.
the error is caused by the following lines:
- lowestDist[pixelNum] = partialDiffSumTemp; both variables are private variables of the kernel and therefor I don't see any potential issue.
- d_disparityLeft[globalMemIdx + TILE_BOUNDARY_WIDTH - WINDOW_RADIUS + 0] = bestDisparity[0]; Here I guess the cause is "OUT_OF_BOUND" but not sure how to debug it since the original code doesn't have any issue.
My Kernel code is is:
#define ALIGN_IMAGE_WIDTH 64
#define NUM_PIXEL_PER_THREAD 4
#define MIN_DISPARITY 0
#define MAX_DISPARITY 55
#define WINDOW_SIZE 19
#define WINDOW_RADIUS (WINDOW_SIZE / 2)
#define TILE_SHARED_MEM_WIDTH 96
#define TILE_SHARED_MEM_HEIGHT 32
#define TILE_BOUNDARY_WIDTH 64
#define TILE_BOUNDARY_HEIGHT (2 * WINDOW_RADIUS)
#define BLOCK_WIDTH (TILE_SHARED_MEM_WIDTH - TILE_BOUNDARY_WIDTH)
#define BLOCK_HEIGHT (TILE_SHARED_MEM_HEIGHT - TILE_BOUNDARY_HEIGHT)
#define THREAD_NUM_WIDTH 8
#define THREADS_NUM_HEIGHT TILE_SHARED_MEM_HEIGHT
//TODO fix input arguments
__kernel void hello_kernel( __global unsigned char* d_leftImage,
__global unsigned char* d_rightImage,
__global float* d_disparityLeft) {
int blockX = get_group_id(0);
int blockY = get_group_id(1);
int threadX = get_local_id(0);
int threadY = get_local_id(1);
__local unsigned char leftImage [TILE_SHARED_MEM_WIDTH * TILE_SHARED_MEM_HEIGHT];
__local unsigned char rightImage [TILE_SHARED_MEM_WIDTH * TILE_SHARED_MEM_HEIGHT];
__local unsigned int partialDiffSum [BLOCK_WIDTH * TILE_SHARED_MEM_HEIGHT];
int alignedImageWidth = 640;
int partialDiffSumTemp;
float bestDisparity[4] = {0,0,0,0};
int lowestDist[4];
lowestDist[0] = 214748364;
lowestDist[1] = 214748364;
lowestDist[2] = 214748364;
lowestDist[3] = 214748364;
// Read image blocks into shared memory. read is done at 32bit integers on a uchar array. each thread reads 3 integers(12byte) 96/12=8threads
int sharedMemIdx = threadY * TILE_SHARED_MEM_WIDTH + 4 * threadX;
int globalMemIdx = (blockY * BLOCK_HEIGHT + threadY) * alignedImageWidth + blockX * BLOCK_WIDTH + 4 * threadX;
for (int i = 0; i < 4; i++) {
leftImage [sharedMemIdx + i ] = d_leftImage [globalMemIdx + i];
leftImage [sharedMemIdx + 4 * THREAD_NUM_WIDTH + i ] = d_leftImage [globalMemIdx + 4 * THREAD_NUM_WIDTH + i];
leftImage [sharedMemIdx + 8 * THREAD_NUM_WIDTH + i ] = d_leftImage [globalMemIdx + 8 * THREAD_NUM_WIDTH + i];
rightImage[sharedMemIdx + i ] = d_rightImage[globalMemIdx + i];
rightImage[sharedMemIdx + 4 * THREAD_NUM_WIDTH + i ] = d_rightImage[globalMemIdx + 4 * THREAD_NUM_WIDTH + i];
rightImage[sharedMemIdx + 8 * THREAD_NUM_WIDTH + i ] = d_rightImage[globalMemIdx + 8 * THREAD_NUM_WIDTH + i];
}
barrier(CLK_LOCAL_MEM_FENCE);
int imageIdx = sharedMemIdx + TILE_BOUNDARY_WIDTH - WINDOW_RADIUS;
int partialSumIdx = threadY * BLOCK_WIDTH + 4 * threadX;
for(int dispLevel = MIN_DISPARITY; dispLevel <= MAX_DISPARITY; dispLevel++) {
// horizontal partial sum
partialDiffSumTemp = 0;
#pragma unroll
for(int i = imageIdx - WINDOW_RADIUS; i <= imageIdx + WINDOW_RADIUS; i++) {
//partialDiffSumTemp += calcDiff(leftImage [i], rightImage[i - dispLevel]);
partialDiffSumTemp += abs(leftImage[i] - rightImage[i - dispLevel]);
}
partialDiffSum[partialSumIdx] = partialDiffSumTemp;
barrier(CLK_LOCAL_MEM_FENCE);
for (int pixelNum = 1, i = imageIdx - WINDOW_RADIUS; pixelNum < NUM_PIXEL_PER_THREAD; pixelNum++, i++) {
partialDiffSum[partialSumIdx + pixelNum] = partialDiffSum[partialSumIdx + pixelNum - 1] +
abs(leftImage[i + WINDOW_SIZE] - rightImage[i - dispLevel + WINDOW_SIZE]) -
abs(leftImage[i] - rightImage[i - dispLevel]);
}
barrier(CLK_LOCAL_MEM_FENCE);
// vertical sum
if(threadY >= WINDOW_RADIUS && threadY < TILE_SHARED_MEM_HEIGHT - WINDOW_RADIUS) {
for (int pixelNum = 0; pixelNum < NUM_PIXEL_PER_THREAD; pixelNum++) {
int rowIdx = partialSumIdx - WINDOW_RADIUS * BLOCK_WIDTH;
partialDiffSumTemp = 0;
for(int i = -WINDOW_RADIUS; i <= WINDOW_RADIUS; i++,rowIdx += BLOCK_WIDTH) {
partialDiffSumTemp += partialDiffSum[rowIdx + pixelNum];
}
if (partialDiffSumTemp < lowestDist[pixelNum]) {
lowestDist[pixelNum] = partialDiffSumTemp;
bestDisparity[pixelNum] = dispLevel - 1;
}
}
}
}
if (threadY >= WINDOW_RADIUS && threadY < TILE_SHARED_MEM_HEIGHT - WINDOW_RADIUS && blockY < 32) {
d_disparityLeft[globalMemIdx + TILE_BOUNDARY_WIDTH - WINDOW_RADIUS + 0] = bestDisparity[0];
d_disparityLeft[globalMemIdx + TILE_BOUNDARY_WIDTH - WINDOW_RADIUS + 1] = bestDisparity[1];
d_disparityLeft[globalMemIdx + TILE_BOUNDARY_WIDTH - WINDOW_RADIUS + 2] = bestDisparity[2];
d_disparityLeft[globalMemIdx + TILE_BOUNDARY_WIDTH - WINDOW_RADIUS + 3] = bestDisparity[3];
}
}
Thanks for all the help
Yuval