2

My dataframe consists of projects with the different individuals that took part in it, as well as the year in which projects were carried out.

How can I create, for each year, a nxn relational matrix (n being the number of individuals) that counts the number of collaborations between individuals.

Consider the following example that reproduces the desired structure:

# Example dataframe
set.seed(1)
tp=cbind(paste(rep("project",10),1:10,sep=""),sample(2005:2010,10,replace=T))
tp=tp[sample(1:10,50,T),]
id=sample(paste(rep("id",10),1:10,sep=""),50,T)
df=as.data.frame(cbind(tp,id));rm(tp,id)
names(df)=c("project","year","id")
df=df[order(df$project,df$id),]

df[1:10,]
# project  year id
# project1 2006 id1
# project1 2006 id3
# project1 2006 id5
# project1 2006 id5
# project4 2006 id3
# project4 2006 id4
# project5 2006 id3
# project5 2006 id4
# project6 2008 id2
# project6 2008 id3

As an example, a relational matrix for the year 2006 would look like this

    id1 id2 id3 id4 id5
id1  0   0   1   0   1
id2  0   0   0   0   0
id3  1   0   0   2   1
id4  0   0   2   0   0
id5  1   0   1   0   0

# link between 1 and 3, 1 and 5, 3 and 5 on project 1
# links between 3 and 4 on project 4 and project 5
# the matrix is symmetric
# the diagonal is O because an individual cannot collaborate with himself
goclem
  • 904
  • 1
  • 10
  • 21
  • I applied your function for each year of the dataset but it does not give the desired nxn relatinal matrix `spl=split(df,df$year);net=lapply(spl,function(x){reshape2::acast(x,project~id,value.var="id")});net` – goclem Jun 04 '15 at 13:51

2 Answers2

2

I altered your sampling code a little bit to make the projects dimension differ from the id dimension as I was playing around with the dimensions of the matrices to ensure I was getting the correct n x n matrices. Here's code that works:

set.seed(1)
tp=cbind(paste(rep("project",5),1:5,sep=""),sample(2008:2010,5,replace=T))
tp=tp[sample(1:5,20,T),]
id=sample(paste(rep("id",10),1:10,sep=""),20,T)
df=as.data.frame(cbind(tp,id));rm(tp,id)
names(df)=c("project","year","id")
df=df[order(df$project,df$id),]

spl=split(df,df$year)
net=lapply(spl,function(x){
  m = table(x$id, x$project)
  res = tcrossprod(m)  ## equivalently: res = m %*% t(m)
  diag(res) <- 0
  res <- ifelse(res > 0, 1, 0)
  res
})
net

Split Data:

$`2008`
    project year  id
5  project1 2008 id4
7  project1 2008 id6
19 project1 2008 id6
2  project5 2008 id1
13 project5 2008 id2
1  project5 2008 id4
16 project5 2008 id9

$`2009`
    project year  id
9  project2 2009 id2
6  project2 2009 id5
20 project2 2009 id6
17 project2 2009 id7
14 project2 2009 id8
11 project3 2009 id7

$`2010`
    project year  id
3  project4 2010 id4
8  project4 2010 id5
15 project4 2010 id5
12 project4 2010 id8
18 project4 2010 id8
4  project4 2010 id9
10 project4 2010 id9

Adjacency matrices by project for each year:

$`2008`

      id1 id2 id4 id5 id6 id7 id8 id9
  id1   0   1   1   0   0   0   0   1
  id2   1   0   1   0   0   0   0   1
  id4   1   1   0   0   1   0   0   1
  id5   0   0   0   0   0   0   0   0
  id6   0   0   1   0   0   0   0   0
  id7   0   0   0   0   0   0   0   0
  id8   0   0   0   0   0   0   0   0
  id9   1   1   1   0   0   0   0   0

$`2009`

      id1 id2 id4 id5 id6 id7 id8 id9
  id1   0   0   0   0   0   0   0   0
  id2   0   0   0   1   1   1   1   0
  id4   0   0   0   0   0   0   0   0
  id5   0   1   0   0   1   1   1   0
  id6   0   1   0   1   0   1   1   0
  id7   0   1   0   1   1   0   1   0
  id8   0   1   0   1   1   1   0   0
  id9   0   0   0   0   0   0   0   0

$`2010`

      id1 id2 id4 id5 id6 id7 id8 id9
  id1   0   0   0   0   0   0   0   0
  id2   0   0   0   0   0   0   0   0
  id4   0   0   0   1   0   0   1   1
  id5   0   0   1   0   0   0   1   1
  id6   0   0   0   0   0   0   0   0
  id7   0   0   0   0   0   0   0   0
  id8   0   0   1   1   0   0   0   1
  id9   0   0   1   1   0   0   1   0
Synergist
  • 517
  • 4
  • 20
1

You can also use dplyr with tidyr for this:

library(dplyr)
library(tidyr)

df %>%
  unique %>%
  mutate(val = 1) %>%
  spread(id, val) %>%
  select(-project) %>%
  group_by(year) %>%
  do({
    mat <- select(., -year) %>% as.matrix
    mat[is.na(mat)] <- 0
    cp <- crossprod(mat)
    diag(cp) <- 0
    cp %>% as.data.frame %>%
      add_rownames(var = 'id')
  }) %>%
  ungroup
Ian Fiske
  • 10,482
  • 3
  • 21
  • 20