i've a problem. I've a dataset a lot of features. When i try to perform my nnet with caret R give me back an error. If i try to perform a smaller part of the features, nnet converge.
Here is my code:
> dim(trainT)
[1] 130 3413
> nnFit <- train(target ~ ., data = trainT,
+ method = "nnet",
+ trControl = fitControl#,
+ #trControl = ctrl, metric = "ROC",
+ #verbose = TRUE#,
+ #tuneGrid = nnGrid
+ )
Something is wrong; all the Accuracy metric values are missing:
Accuracy Kappa
Min. : NA Min. : NA
1st Qu.: NA 1st Qu.: NA
Median : NA Median : NA
Mean :NaN Mean :NaN
3rd Qu.: NA 3rd Qu.: NA
Max. : NA Max. : NA
NA's :9 NA's :9
Error in train.default(x, y, weights = w, ...) : Stopping
In addition: There were 50 or more warnings (use warnings() to see the first 50)
>
> nnFit <- train(target ~ ., data = trainT[,1:100],
method = "nnet",
trControl = fitControl#,
#trControl = ctrl, metric = "ROC",
#verbose = TRUE#,
#tuneGrid = nnGrid
)
# weights: 102
initial value 65.440715
iter 10 value 34.586483
iter 20 value 25.531746
iter 30 value 22.930604
iter 40 value 22.919387
iter 50 value 20.326238
iter 60 value 20.018595
iter 70 value 5.289718
iter 80 value 0.016055
final value 0.000063
converged
# weights: 304
initial value 85.540457
iter 10 value 25.219303
iter 20 value 5.562977
iter 30 value 4.712105
iter 40 value 4.676887
iter 50 value 4.625627
iter 60 value 4.622304
iter 70 value 4.597801
iter 80 value 4.582877
iter 90 value 4.570602
iter 100 value 4.569542
final value 4.569542
stopped after 100 iterations
[...]
initial value 75.037558
iter 10 value 4.301843
iter 20 value 1.495044
iter 30 value 0.159978
iter 40 value 0.118735
iter 50 value 0.110560
iter 60 value 0.101595
iter 70 value 0.079860
iter 80 value 0.073034
iter 90 value 0.065459
iter 100 value 0.052024
final value 0.052024
stopped after 100 iterations
# weights: 506
initial value 95.448738
iter 10 value 20.859400
iter 20 value 6.493820
iter 30 value 5.597509
iter 40 value 5.516322
iter 50 value 5.510970
iter 60 value 5.510881
final value 5.510881
converged
Can you help me? :)
PS: Session info:
> sessionInfo()
R version 3.2.0 (2015-04-16)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 8 x64 (build 9200)
locale:
[1] LC_COLLATE=Italian_Italy.1252 LC_CTYPE=Italian_Italy.1252
[3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C
[5] LC_TIME=Italian_Italy.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] nnet_7.3-9 caret_6.0-47 ggplot2_1.0.1 lattice_0.20-31
loaded via a namespace (and not attached):
[1] Rcpp_0.11.6 magrittr_1.5 splines_3.2.0 MASS_7.3-40
[5] munsell_0.4.2 colorspace_1.2-6 foreach_1.4.2 minqa_1.2.4
[9] car_2.0-25 stringr_1.0.0 plyr_1.8.2 tools_3.2.0
[13] parallel_3.2.0 pbkrtest_0.4-2 grid_3.2.0 gtable_0.1.2
[17] nlme_3.1-120 mgcv_1.8-6 quantreg_5.11 e1071_1.6-4
[21] class_7.3-12 iterators_1.0.7 gtools_3.5.0 lme4_1.1-7
[25] digest_0.6.8 Matrix_1.2-0 nloptr_1.0.4 reshape2_1.4.1
[29] codetools_0.2-11 stringi_0.4-1 compiler_3.2.0 BradleyTerry2_1.0-6
[33] scales_0.2.4 SparseM_1.6 brglm_0.5-9 proto_0.3-10
EDIT: i forget a comma in my code :( i'm while only the col and only for test.
@cyberj0g:
I try what you suggested:
1- analyzing the summary that I have seen are all numbers.
2- If I call warning () does not return anything, but if I try to stop before completing the nnet me:
> nnFit <- train(target ~ ., data = trainT,
+ method = "nnet",
+ trControl = fitControl#,
+ #trControl = ctrl, metric = "ROC",
+ #verbose = TRUE#,
+ #tuneGrid = nnGrid
+ )
Warning messages:
1: In eval(expr, envir, enclos) :
model fit failed for Fold1.Rep1: size=1, decay=0e+00 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (3011) weights
2: In eval(expr, envir, enclos) :
model fit failed for Fold1.Rep1: size=3, decay=0e+00 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (9031) weights
3: In eval(expr, envir, enclos) :
model fit failed for Fold1.Rep1: size=5, decay=0e+00 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (15051) weights
4: In eval(expr, envir, enclos) :
model fit failed for Fold1.Rep1: size=1, decay=1e-01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (3011) weights
5: In eval(expr, envir, enclos) :
model fit failed for Fold1.Rep1: size=3, decay=1e-01 Error in nnet.default(x, y, w, entropy = TRUE, ...) :
too many (9031) weights
3- if i increase the number of cv (if i understand well you refear to it) the problem is the same:
> fitControl <- trainControl(## 5-fold CV
+ method = "repeatedcv",
+ number = 1000,
+ ## repeated 5 times
+ repeats = 5)
> nnFit <- train(target ~ ., data = trainT,
+ method = "nnet",
+ trControl = fitControl#,
+ #trControl = ctrl, metric = "ROC",
+ #verbose = TRUE#,
+ #tuneGrid = nnGrid
+ )
There were 50 or more warnings (use warnings() to see the first 50)