The Levenshtein distance corresponds to the number of single-character insertions, deletions and substitutions in an optimal global pairwise alignment of two sequences if the gap and mismatch costs are all 1.
The Needleman-Wunsch DP algorithm will find such an alignment, in addition to its score (it's essentially the same DP algorithm as the one used to calculate the Levenshtein distance, but with the option to weight gaps, and mismatches between any given pair of characters, arbitrarily). But there are more general models of alignment that allow reduced penalties for gaps at the start or the end (and reduced penalties for contiguous blocks of gaps, which may also be useful here, although it doesn't directly answer the question). At one extreme, you have local alignment, which is where you pay no penalty at all for gaps at the ends -- this is computed by the Smith-Waterman DP algorithm. I think what you want here is in-between: You want to penalise gaps at the start of both the query and test strings, and gaps in the test string at the end, but not gaps in the query string at the end. That way, trailing mismatches cost nothing, and the costs will look like:
Query: nvmb
Costs: 0100000000000000 = 1 in total
Against: number the stars
Query: nvmb
Costs: 1101 = 3 in total
Against: game
Query: number the stars
Costs: 0100111111111111 = 13 in total
Against: nvmb
Query: ber star
Costs: 1110001111100000 = 8 in total
Against: number the stars
Query: some numbor
Costs: 111110000100000000000 = 6 in total
Against: number the stars
(In fact you might want to give trailing mismatches a small nonzero penalty, so that an exact match is always preferred to a prefix-only match.)
The Algorithm
Suppose the query string A has length n, and the string B that you are testing against has length m. Let d[i][j] be the DP table value at (i, j) -- that is, the cost of an optimal alignment of the length-i prefix of A with the length-j prefix of B. If you go with a zero penalty for trailing mismatches, you only need to modify the NW algorithm in a very simple way: instead of calculating and returning the DP table value d[n][m], you just need to calculate the table as before, and find the minimum of any d[n][j], for 0 <= j <= m. This corresponds to the best match of the query string against any prefix of the test string.