I'm looking for a method for solve the 2D heat equation with python. I have already implemented the finite difference method but is slow motion (to make 100,000 simulations takes 30 minutes). The idea is to create a code in which the end can write,
for t in TIME:
DeltaU=f(U)
U=U+DeltaU*DeltaT
save(U)
How can I do that?
In the first form of my code, I used the 2D method of finite difference, my grill is 5000x250 (x, y). Now I would like to decrease the speed of computing and the idea is to find
DeltaU = f(u)
where U is a heat function. For implementation I used this source http://www.timteatro.net/2010/10/29/performance-python-solving-the-2d-diffusion-equation-with-numpy/ for 2D case, but the run time is more expensive for my necessity. Are there some methods to do this?
Maybe I must to work with the matrix
A=1/dx^2 (2 -1 0 0 ... 0
-1 2 -1 0 ... 0
0 -1 2 -1 ... 0
. .
. .
. .
0 ... -1 2)
but how to make this in the 2D problem? How to inserting Boundary conditions in A? This is the code for the finite difference that I used:
Lx=5000 # physical length x vector in micron
Ly=250 # physical length y vector in micron
Nx = 100 # number of point of mesh along x direction
Ny = 50 # number of point of mesh along y direction
a = 0.001 # diffusion coefficent
dx = 1/Nx
dy = 1/Ny
dt = (dx**2*dy**2)/(2*a*(dx**2 + dy**2)) # it is 0.04
x = linspace(0.1,Lx, Nx)[np.newaxis] # vector to create mesh
y = linspace(0.1,Ly, Ny)[np.newaxis] # vector to create mesh
I=sqrt(x*y.T) #initial data for heat equation
u=np.ones(([Nx,Ny])) # u is the matrix referred to heat function
steps=100000
for m in range (0,steps):
du=np.zeros(([Nx,Ny]))
for i in range (1,Nx-1):
for j in range(1,Ny-1):
dux = ( u[i+1,j] - 2*u[i,j] + u[i-1, j] ) / dx**2
duy = ( u[i,j+1] - 2*u[i,j] + u[i, j-1] ) / dy**2
du[i,j] = dt*a*(dux+duy)
# Boundary Conditions
t1=(u[:,0]+u[:,1])/2
u[:,0]=t1
u[:,1]=t1
t2=(u[0,:]+u[1,:])/2
u[0,:]=t2
u[1,:]=t2
t3=(u[-1,:]+u[-2,:])/2
u[-1,:]=t3
u[-2,:]=t3
u[:,-1]=1
filename1='data_{:08d}.txt'
if m%100==0:
np.savetxt(filename1.format(m),u,delimiter='\t' )
For elaborate 100000 steps the run time is about 30 minutes. I would to optimize this code (with the idea presented in the initial lines) to have a run time about 5/10 minutes or minus. How can I do it?