I am looking into implementing a scalable unordered collection of objects on top of Amazon DynamoDB. So far the following options have been considered:
Use DynamoDB document data types (map, list) and use document path to access stand-alone items. This has one obvious drawback for collection being limited to 400KB of data, meaning perhaps 1..10K objects depending on their size. Less obvious drawback is that cost of insertion of a new object into such collection is going to be huge: Amazon specifies that the write capacity will be deducted based on the total item size, not just newly added object -- therefore ~400 capacity units for inserting 1KB object when approaching the size limit. So considering this ruled out?
Using composite primary hash + range key, where primary hash remains the same for all objects in the collection, and range key is just something random or an atomic counter. Obvious drawback is that having identical hash key results in bad key distribution -- cardinality is low when there are collections with large number of objects. This means bad partitioning, and having a scale issue with all reads/writes on the same collection being stuck to one shard, becoming subject to 3000 reads / 1000 writes per second limitation of DynamoDB partition.
Using global secondary index with secondary hash + range key, where hash key remains the same for all objects belonging to the same collection, and range key is just something random or an atomic counter. Similar to above, partitioning becomes poor for the GSI, and it will become a bottleneck with too many identical hashes draining all the provisioned capacity to the index rapidly. I didn't find how the GSI is implemented exactly, thus not sure how badly it suffers from low cardinality.
Question is, whether I could live with (2) or (3) and suffer from non-ideal key distribution, or is there another way of implementing collection that was overlooked, or perhaps I should at all consider looking into another nosql database engine.