You are most probably speaking about recursive regression (which is quite easy in Matlab). For python, try and use the scipy.optimize.curve_fit
.
For a simple 3 degree polynomial fit, this would work based on numpy.polyfit
and poly1d
.
import numpy as np
import matplotlib.pyplot as plt
points = np.array([(1, 1), (2, 4), (3, 1), (9, 3)])
# get x and y vectors
x = points[:,0]
y = points[:,1]
# calculate polynomial
z = np.polyfit(x, y, 3)
f = np.poly1d(z)
# calculate new x's and y's
x_new = np.linspace(x[0], x[-1], 50)
y_new = f(x_new)
plt.plot(x,y,'o', x_new, y_new)
plt.xlim([x[0]-1, x[-1] + 1 ])
plt.show()