I have been playing around with algorithms and ILP for the single depot vehicle scheduling problem (SDVSP) and now want to extend my knowledge towards the multiple depot vehicle scheduling problem (MDVSP), as i would like to use this knowledge in a project of mine.
As for the question, I've found and implemented several algorithms for the MDSVP. However, one question i am very curious about is how to go about determining the amount of needed depots (and locations to an extend). Sadly enough i haven't been able to find any resources really which do not assume/require that the depots are set. Thus my question would be: How would i be able to approach a MDVSP in which i can determine the amount and locations of the depots?
(Edit) To clarify: Assume we are given a set of trips T1, T2...Tn like usually in a SDVSP or MDVSP. Multiple trips can be driven in succession before returning to a depot. Leaving and returning to depots usually only happen at the start and end of a day. But as an extension to the normal problems, we can now determine the amount and locations of our depots, opposed to having set depots.
The objective is to find a solution in which all trips are driven with the minimal cost. The cost consists of the amount of deadhead (the distance which the car has to travel between trips, and from and to the depots), a fixed cost K per car, and a fixed cost C per depots.
I hope this clears up the question somewhat.