For Eigen, there's a library named Spectra. As is described on its web page, Spectra is a redesign of the ARPACK library using C++ language.
Unlike Armadillo, suggested in another answer, Spectra does support long double
and any other real floating-point type (e.g. boost::multiprecision::float128
).
Here's an example of usage (same as the version in documentation, but adapted for experiments with different floating-point types):
#include <Eigen/Core>
#include <SymEigsSolver.h> // Also includes <MatOp/DenseSymMatProd.h>
#include <iostream>
#include <limits>
int main()
{
using Real=long double;
using Matrix=Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;
// We are going to calculate the eigenvalues of M
const auto A = Matrix::Random(10, 10);
const Matrix M = A + A.transpose();
// Construct matrix operation object using the wrapper class DenseGenMatProd
Spectra::DenseSymMatProd<Real> op(M);
// Construct eigen solver object, requesting the largest three eigenvalues
Spectra::SymEigsSolver<Real,
Spectra::LARGEST_ALGE,
Spectra::DenseSymMatProd<Real>> eigs(&op, 3, 6);
// Initialize and compute
eigs.init();
const auto nconv = eigs.compute();
std::cout << nconv << " eigenvalues converged.\n";
// Retrieve results
if(eigs.info() == Spectra::SUCCESSFUL)
{
const auto evalues = eigs.eigenvalues();
std::cout.precision(std::numeric_limits<Real>::digits10);
std::cout << "Eigenvalues found:\n" << evalues << '\n';
}
}