There are k-means variants thst process documents one by one,
MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability 1.
and k-means variants that repeatedly draw a random sample.
D. Sculley (2010). Web Scale K-Means clustering. Proceedings of the 19th international conference on World Wide Web
Bahmani, B., Moseley, B., Vattani, A., Kumar, R., & Vassilvitskii, S. (2012). Scalable k-means++. Proceedings of the VLDB Endowment, 5(7), 622-633.
But in the end, it's still useless old k-means. It's a good quantization approach, but not very robust to noise, not capable of handling clusters of different size, non-convex shape, hierarchy (e.g. sports, inside baseball) etc. it's a signal processing technique, not a data organization technique.
So the practical impact of all these is 0. Yes, they can run k-means on insane data - but if you can't make sense of the result, why would you do so?