You can create numpy arrays for indexing into different dimensions of the 3D array
and then use use ix_
function to create indexing map and thus get the sliced output. The benefit with ix_
is that it allows for broadcasted indexing maps. More info on this could be found here. Then, you can specify different window sizes for each dimension for a generic solution. Here's the implementation with sample input data -
import numpy as np
A = np.random.randint(0,9,(17,18,16)) # Input array
indx = np.array([5,10,8]) # Pivot indices for each dim
N = [4,3,2] # Window sizes
# Arrays of start & stop indices
start = indx - N
stop = indx + N + 1
# Create indexing arrays for each dimension
xc = np.arange(start[0],stop[0])
yc = np.arange(start[1],stop[1])
zc = np.arange(start[2],stop[2])
# Create mesh from multiple arrays for use as indexing map
# and thus get desired sliced output
Aout = A[np.ix_(xc,yc,zc)]
Thus, for the given data with window sizes array, N = [4,3,2]
, the whos
info shows -
In [318]: whos
Variable Type Data/Info
-------------------------------
A ndarray 17x18x16: 4896 elems, type `int32`, 19584 bytes
Aout ndarray 9x7x5: 315 elems, type `int32`, 1260 bytes
The whos
info for the output, Aout
seems to be coherent with the intended output shape which must be 2N+1
.