Original Question
I am trying to use multiprocessing Pool in Python. This is my code:
def f(x):
return x
def foo():
p = multiprocessing.Pool()
mapper = p.imap_unordered
for x in xrange(1, 11):
res = list(mapper(f,bar(x)))
This code makes use of all CPUs (I have 8 CPUs) when the xrange
is small like xrange(1, 6)
. However, when I increase the range to xrange(1, 10)
. I observe that only 1 CPU is running at 100% while the rest are just idling. What could be the reason? Is it because, when I increase the range, the OS shutdowns the CPUs due to overheating?
How can I resolve this problem?
minimal, complete, verifiable example
To replicate my problem, I have created this example: Its a simple ngram generation from a string problem.
#!/usr/bin/python
import time
import itertools
import threading
import multiprocessing
import random
def f(x):
return x
def ngrams(input_tmp, n):
input = input_tmp.split()
if n > len(input):
n = len(input)
output = []
for i in range(len(input)-n+1):
output.append(input[i:i+n])
return output
def foo():
p = multiprocessing.Pool()
mapper = p.imap_unordered
num = 100000000 #100
rand_list = random.sample(xrange(100000000), num)
rand_str = ' '.join(str(i) for i in rand_list)
for n in xrange(1, 100):
res = list(mapper(f, ngrams(rand_str, n)))
if __name__ == '__main__':
start = time.time()
foo()
print 'Total time taken: '+str(time.time() - start)
When num
is small (e.g., num = 10000
), I find that all 8 CPUs are utilised. However, when num
is substantially large (e.g.,num = 100000000
). Only 2 CPUs are used and rest are idling. This is my problem.
Caution: When num
is too large it may crash your system/VM.