I am trying to create a 3D surface energy diagram where an x,y position on a grid contains an associated z level. The issue is that the grid is not uniform (ie, there is not a z component for every x,y position). Is there a way to refrain from plotting those values by calling them NaN in the corresponding position in the array?
Here is what I have tried so far:
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pylab
from matplotlib import cm
#Z levels
energ = np.array([0,3.5,1,-0.3,-1.5,-2,-3.4,-4.8])
#function for getting x,y associated z values?
def fun(x,y,array):
return array[x]
#arrays for grid
x = np.arange(0,7,0.5)
y = np.arange(0,7,0.5)
#create grid
X, Y = np.meshgrid(x,y)
zs = np.array([fun(x,y,energ) for x in zip(np.ravel(X))])
Z = zs.reshape(X.shape)
plt3d = plt.figure().gca(projection='3d')
#gradients now with respect to x and y, but ideally with respect to z only
Gx, Gz = np.gradient(X * Y)
G = (Gx ** 2 + Gz ** 2) ** .5 # gradient magnitude
N = G / G.max() # normalize 0..1
plt3d.plot_surface(X, Y, Z, rstride=1, cstride=1,
facecolors=cm.jet(N), edgecolor='k', linewidth=0, antialiased=False, shade=False)
plt.show()
I cannot post image here of this plot but if you run the code you will see it But I would like to not plot certain x,y pairs, so the figure should triangle downward to the minimum. Can this be accomplished by using nan values? Also would like spacing between each level, to be connected by lines.
n = np.NAN
#energ represents the z levels, so the overall figure should look like a triangle.
energ = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,2.6,n,2.97,n,2.6,n,2.97,n,2.6,n,3.58,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,1.09,n,1.23,n,1.09,n,1.23,n,1.7,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,-0.65,n,-0.28,n,-0.65,n,0.33,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,-2.16,n,-2.02,n,-1.55,n,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,-3.9,n,-2.92,n,n,n,n,n,],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,n,-4.8,n,n,n,n,n,n,]])
plt3d = plt.figure().gca(projection='3d')
Gx, Gz = np.gradient(X * energ) # gradients with respect to x and z
G = (Gx ** 2 + Gz ** 2) ** .5 # gradient magnitude
N = G / G.max() # normalize 0..1
x = np.arange(0,13,1)
y = np.arange(0,13,1)
X, Y = np.meshgrid(x,y)
#but the shapes don't seem to match up
plt3d.plot_surface(X, Y, energ, rstride=1, cstride=1,
facecolors=cm.jet(N), edgecolor='k',
linewidth=0, antialiased=False, shade=False
)
Using masked arrays generates the following error: local Python[7155] : void CGPathCloseSubpath(CGMutablePathRef): no current point.
n = np.NAN
energ = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,2.6,n,2.97,n,2.6,n,2.97,n,2.6,n,3.58,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,1.09,n,1.23,n,1.09,n,1.23,n,1.7,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,-0.65,n,-0.28,n,-0.65,n,0.33,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,-2.16,n,-2.02,n,-1.55,n,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,-3.9,n,-2.92,n,n,n,n,n,],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,n,-4.8,n,n,n,n,n,n,]])
x = np.arange(0,13,1)
y = np.arange(0,13,1)
X, Y = np.meshgrid(x,y)
#create masked arrays
mX = ma.masked_array(X, mask=[[0,0,0,0,0,0,0,0,0,0,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,0,1,0,1,0,1,0,1,0,1,0,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1,0,1,0,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,0,1,0,1,0,1,0,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,0,1,0,1,0,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,0,1,0,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,0,1,1,1,1,1,1]])
mY = ma.masked_array(Y, mask=[[0,0,0,0,0,0,0,0,0,0,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,0,1,0,1,0,1,0,1,0,1,0,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1,0,1,0,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,0,1,0,1,0,1,0,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,0,1,0,1,0,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,0,1,0,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,0,1,1,1,1,1,1]])
m_energ = ma.masked_array(energ, mask=[[0,0,0,0,0,0,0,0,0,0,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,0,1,0,1,0,1,0,1,0,1,0,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1,0,1,0,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,0,1,0,1,0,1,0,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,0,1,0,1,0,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,0,1,0,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,0,1,1,1,1,1,1]])
plt3d = plt.figure().gca(projection='3d')
plt3d.plot_surface(mX, mY, m_energ, rstride=1, cstride=1, edgecolor='k', linewidth=0, antialiased=False, shade=False)
plt.show()