I am very new to Cython, yet am already experiencing extraordinary speedups just copying my .py
to .pyx
(and cimport cython
, numpy
etc) and importing into ipython3
with pyximport
.
Many tutorials start in this approach with the next step being to add cdef
declarations for every data type, which I can do for the iterators in my for loops etc.
But unlike most Pandas Cython tutorials or examples I am not apply functions so to speak, more manipulating data using slices, sums and division (etc).
So the question is: Can I increase the speed at which my code runs by stating that my DataFrame only contains floats (double
), with columns that are int
and rows that are int
?
How to define the type of an embedded list? i.e [[int,int],[int]]
Here is an example that generates the AIC score for a partitioning of a DF, sorry it is so verbose:
cimport cython
import numpy as np
cimport numpy as np
import pandas as pd
offcat = [
"breakingPeace",
"damage",
"deception",
"kill",
"miscellaneous",
"royalOffences",
"sexual",
"theft",
"violentTheft"
]
def partitionAIC(EmpFrame, part, OffenceEstimateFrame, ReturnDeathEstimate=False):
"""EmpFrame is DataFrame of ints, part is nested list of ints, OffenceEstimate frame is DF of float"""
"""partOf/block is a list of ints"""
"""ll, AIC, is series/frame of floats"""
##Cython cdefs
cdef int DFlen
cdef int puns
cdef int DeathPun
cdef int k
cdef int pId
cdef int punish
DFlen = EmpFrame.shape[1]
puns = 2
DeathPun = 0
PartitionModel = pd.DataFrame(index = EmpFrame.index, columns = EmpFrame.columns)
for partOf in part:
Grouping = [puns*x + y for x in partOf for y in list(range(0,puns))]
PartGroupSum = EmpFrame.iloc[:,Grouping].sum(axis=1)
for punish in range(0,puns):
PunishGroup = [x*puns+punish for x in partOf]
punishPunishment = ((EmpFrame.iloc[:,PunishGroup].sum(axis = 1) + 1/puns).div(PartGroupSum+1)).values[np.newaxis].T
PartitionModel.iloc[:,PunishGroup] = punishPunishment
PartitionModel = PartitionModel*OffenceEstimateFrame
if ReturnDeathEstimate:
DeathProbFrame = pd.DataFrame([[part]], index=EmpFrame.index, columns=['Partition'])
for pId,block in enumerate(part):
DeathProbFrame[pId] = PartitionModel.iloc[:,block[::puns]].sum(axis=1)
DeathProbFrame = DeathProbFrame.apply(lambda row: sorted( [ [format("%6.5f"%row[idx])]+[offcat[X] for X in x ]
for idx,x in enumerate(row['Partition'])],
key=lambda x: x[0], reverse=True),axis=1)
ll = (EmpFrame*np.log(PartitionModel.convert_objects(convert_numeric=True))).sum(axis=1)
k = (len(part))*(puns-1)
AIC = 2*k-2*ll
if ReturnDeathEstimate:
return AIC, DeathProbFrame
else:
return AIC