The simple answer is pretty obvious: yes, it increases the chance of collision by as many powers of 2 as there are bits missing. For 56 bytes halved to 28 bytes you get the chance of collision increased 2^(28*8). That still leaves the chance of collision at 1:2^(28*8).
Your use of that truncation can be still perfectly legit, depending what it is. Git for example shows only the first few bytes from a commit hash and for most practical purposes the short one works fine.
A "perfect" hash should retain a proportional amount of "effective" bits if you truncate it. For example 32 bits of SHA256 result should have the same "strength" as a 32-bit CRC, although there may be some special properties of CRC that make it more suitable for some purposes while the truncated SHA may be better for others.
If you're doing any kind of security with this it will be difficult to prove your system, you're probably better of using a shorter but complete hash.
Lets shrink the size to make sense of it and use 2 bytes hash instead of 56. The original hash will have 65536 possible values, so if you hash more than that many strings you will surely get a collision. Half that to 1 bytes and you will get a collision after at most 256 strings hashed, regardless do you take the first or the second byte. So your chance of collision is 256 greater (2^(1byte*8bits)) and is 1:256.
Long hashes are used to make it truly impractical to brute-force them, even after long years of cryptanalysis. When MD5 was introduced in 1991 it was considered secure enough to use for certificate signing, in 2008 it was considered "broken" and not suitable for security-related use. Various cryptanalysis techniques can be developed to reduce the "effective" strength of hash and encryption algorithms, so the more spare bits there are (in an otherwise strong algorithm) the more effective bits should remain to keep the hash secure for all practical purposes.