I ran through the algebra which I had previously done for the Verlet method without the force - this lead to the same code as you see below, but the "+(2*F/D)" term was missing when I ignored the external force. The algorithm worked accurately, as expected, however for the following parameters:
m = 7 ; k = 8 ; b = 0.1 ; params = [m,k,b];
(and step size h = 0.001)
a force far above something like 0.00001 is much too big. I suspect I've missed a trick with the algebra.
My question is whether someone can spot the flaw in my addition of a force term in my Verlet method
% verlet.m
% uses the verlet step algorithm to integrate the simple harmonic
% oscillator.
% stepsize h, for a second-order ODE
function vout = verlet(vinverletx,h,params,F)
% vin is the particle vector (xn,yn)
x0 = vinverletx(1);
x1 = vinverletx(2);
% find the verlet coefficients
D = (2*params(1))+(params(3)*h);
A = (2/D)*((2*params(1))-(params(2)*h^2));
B=(1/D)*((params(3)*h)-(2*params(1)));
x2 = (A*x1)+(B*x0)+(2*F/D);
vout = x2;
% vout is the particle vector (xn+1,yn+1)
end