3

I'm trying to speed up some numeric code generated by lambdify using numexpr. Unfortunately, the numexpr-based function breaks when using the sqrt function, even though it's one of the supported functions.

This reproduces the issue for me:

import sympy
import numpy as np
import numexpr

from sympy.utilities.lambdify import lambdify

expr = sympy.S('b*sqrt(a) - a**2')
a, b = sorted(expr.free_symbols, key=lambda s: s.name)

func_numpy = lambdify((a,b), expr, modules=[np], dummify=False)
func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False)

foo, bar = np.random.random((2, 4))

print sympy.__version__
print func_numpy(foo, bar)
print func_numexpr(foo, bar)

When I run this, the output is:

0.7.6
[-0.02062061  0.08648306 -0.57868128  0.27598245]
Traceback (most recent call last):
  File "sympy_test.py", line 17, in <module>
    print func_numexpr(foo, bar)
  File "<string>", line 1, in <lambda>
NameError: global name 'sqrt' is not defined

As a sanity check, I also tried calling numexpr directly:

numexpr.evaluate('b*sqrt(a) - a**2', local_dict=dict(a=foo, b=bar))

which works as expected, producing the same result as func_numpy.


EDIT: It works when I use the line:

func_numexpr = lambdify((a,b), expr, modules=['numexpr'], dummify=False)

Is this a sympy bug?

perimosocordiae
  • 17,287
  • 14
  • 60
  • 76

1 Answers1

-1

you can change np.sqrt(9) to numexpr.evaluate('9**0.5')

bluesky
  • 243
  • 2
  • 12